题目内容
13.设函数f(x)=lnx-x+1.(Ⅰ)分析f(x)的单调性;
(Ⅱ)证明:当x∈(1,+∞)时,1<$\frac{x-1}{lnx}$<x.
分析 (Ⅰ)求出${f^'}(x)=\frac{1-x}{x}(x>0)$,利用导函数的符号,判断函数的单调性.
(Ⅱ)设F(x)=xlnx-x+1,x>1,利用导函数F′(x)=1+lnx-1=lnx,判断函数的单调性,然后最后证明原不等式成立;
解答 解:(Ⅰ)由f(x)=lnx-x+1,有${f^'}(x)=\frac{1-x}{x}(x>0)$,则f(x)在(0,1)上递增,在(1,+∞)递减;
(Ⅱ)证明:当x∈(1,+∞)时,1<$\frac{x-1}{lnx}$<x,即为lnx<x-1<xlnx.
结合(Ⅰ)知,当x>1时f′(x)<0恒成立,即f(x)在(1,+∞)递减,
可得f(x)<f(1)=0,即有lnx<x-1;
设F(x)=xlnx-x+1,x>1,F′(x)=1+lnx-1=lnx,
当x>1时,F′(x)>0,可得F(x)递增,即有F(x)>F(1)=0,
即有xlnx>x-1,则原不等式成立;
点评 本题考查函数的导数的综合应用,函数的单调性以及构造法的应用,考查转化思想以及计算能力.
练习册系列答案
相关题目
8.已知双曲线C:$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{{b}^{2}}$=1(b>0)的焦点到渐近线的距离为3,则双曲线C的虚轴长为( )
| A. | 3 | B. | 6 | C. | $2\sqrt{5}$ | D. | $2\sqrt{21}$ |
18.直线l将圆x2+y2-2x-4y=0平分,且与直线x+2y=0垂直,则直线l的方程是( )
| A. | 2x-y=0 | B. | 2x-y-2=0 | C. | x+2y-3=0 | D. | x-2y+3=0 |
5.函数y=sin(x-$\frac{π}{4}$)cos(x+$\frac{π}{4}$)+$\frac{1}{2}$是( )
| A. | 最小正周期为π的奇函数 | B. | 最小正周期为π的偶函数 | ||
| C. | 最小正周期为$\frac{π}{2}$的奇函数 | D. | 最小正周期为$\frac{π}{2}$的偶函数 |
2.假设关于某设备的使用年限x(年)和所支出的维修费用y(万元)有如表的统计资料:
若由资料可知y对x呈线性相关关系,试求:
(1)线性回归方程;
(2)根据回归直线方程,估计使用年限为12年时,维修费用是多少?
参考公式:$\stackrel{∧}{b}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,$\stackrel{∧}{a}$=$\overline{y}$-$\stackrel{∧}{b}$$\overline{x}$,$\stackrel{∧}{y}$=$\stackrel{∧}{b}$x+$\stackrel{∧}{a}$.
| 使用年限x(年) | 2 | 3 | 4 | 5 | 6 |
| 维修费用y(万元) | 2.2 | 3.8 | 5.5 | 6.5 | 7.0 |
(1)线性回归方程;
(2)根据回归直线方程,估计使用年限为12年时,维修费用是多少?
参考公式:$\stackrel{∧}{b}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,$\stackrel{∧}{a}$=$\overline{y}$-$\stackrel{∧}{b}$$\overline{x}$,$\stackrel{∧}{y}$=$\stackrel{∧}{b}$x+$\stackrel{∧}{a}$.
3.点P在曲线y=x3-x+7上移动,过点P的切线倾斜角的取值范围是( )
| A. | [0,π] | B. | $[0,\frac{π}{2})∪[\frac{3π}{4},π)$ | C. | $[0,\frac{π}{2})∪[\frac{π}{2},π)$ | D. | $[0,\frac{π}{2}]∪[\frac{3π}{4},π)$ |