题目内容
20.求值:$\frac{1+cos20°}{2sin20°}$-sin10°(cot5°-tan5°)分析 由条件利用同角三角函数的基本关系、倍角公式,把要求的式子化为$\frac{cos10°}{2sin10°}$-2cos10°,通分后利用两角差的正弦公式展开合并、约分得到结果.
解答 解:$\frac{1+cos20°}{2sin20°}$-sin10°(cot5°-tan5°)=$\frac{1+{2cos}^{2}10°-1}{4sin10°cos10°}$-sin10°•($\frac{cos5°}{sin5°}$-$\frac{sin5°}{cos5°}$)=$\frac{1}{2}$•$\frac{{2cos}^{2}10°}{2sin10°cos10°}$-sin10°•$\frac{cos10°}{\frac{1}{2}sin10°}$
=$\frac{1}{2}$•$\frac{cos10°}{sin10°}$-2cos10°=$\frac{cos10°-4sin10°cos10°}{2sin10°}$=$\frac{cos10°-2sin(30°-10°)}{2sin10°}$=$\frac{cos10°-2sin30°cos10°+2cos30°sin10°}{2sin10°}$
=$\frac{\sqrt{3}•sin10°}{2sin10°}$=$\frac{\sqrt{3}}{2}$.
点评 本题主要考查同角三角函数的基本关系、诱导公式、两角差的正弦公式的应用,属于中档题.
练习册系列答案
相关题目
8.若在曲线y=a2x+x+1(a>0,且a≠1)上的点(0,m)处的切线与直线mx-y+1=0平行,则m+a=( )
| A. | 1+e | B. | 1+$\sqrt{e}$ | C. | 2+e | D. | 2+$\sqrt{e}$ |
6.过双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的一个焦点F向其一条渐近线作垂线l,垂足为A,l与另一条渐近线交于B点,若$\overrightarrow{FB}$=3$\overrightarrow{FA}$,则双曲线的离心率为( )
| A. | $\frac{\sqrt{6}}{3}$ | B. | 2 | C. | $\frac{\sqrt{6}}{2}$ | D. | $\sqrt{3}$ |
7.双曲线x2-4y2=4的渐近线方程是( )
| A. | y=±$\frac{1}{4}$x | B. | y=±$\frac{1}{2}$x | C. | y=±4x | D. | y=±2x |