题目内容
3.在△ABC中,已知a,b,c分别为∠A,∠B,∠C所对的边,且a=4,b=4$\sqrt{3}$,∠A=30°,则∠B等于$\frac{π}{3}$,或$\frac{2π}{3}$.分析 由已知及正弦定理可得sinB的值,结合B为三角形内角,利用特殊角的三角函数值即可得解.
解答 解:∵a=4,b=4$\sqrt{3}$,∠A=30°,
∴由正弦定理可得:sinB=$\frac{b•sinA}{a}$=$\frac{4\sqrt{3}×\frac{1}{2}}{4}$=$\frac{\sqrt{3}}{2}$,
又∵B为三角形内角,
∴B=$\frac{π}{3}$,或$\frac{2π}{3}$.
故答案为:$\frac{π}{3}$,或$\frac{2π}{3}$.
点评 本题主要考查了正弦定理,特殊角的三角函数值在解三角形中的应用,考查了转化思想,属于基础题.
练习册系列答案
相关题目
13.已知向量$\overrightarrow{a}$=(-2,0),$\overrightarrow{b}$=(1,1),则下列结论正确的是( )
| A. | $\overrightarrow{a}$•$\overrightarrow{b}$=2 | B. | $\overrightarrow{a}$∥$\overrightarrow{b}$ | C. | |$\overrightarrow{a}$|=|$\overrightarrow{b}$| | D. | $\overrightarrow{b}$⊥($\overrightarrow{a}$+$\overrightarrow{b}$) |
14.已知角α(0°≤α<360°)终边上一点的坐标为(sin150°,cos150°),则α=( )
| A. | 150° | B. | 135° | C. | 300° | D. | 60° |
11.抛掷一枚质地均匀的骰子两次,记事件A={两次的点数均为偶数且点数之差的绝对值为2},则P(A)=( )
| A. | $\frac{1}{9}$ | B. | $\frac{1}{3}$ | C. | $\frac{4}{9}$ | D. | $\frac{5}{9}$ |
15.已知函数$f(x)=\left\{\begin{array}{l}-{x^2}-4x+5,x≤1\\ lnx,x>1\end{array}\right.$若关于x的方程$f(x)=kx-\frac{1}{2}$恰有四个不相等的实数根,则实数k的取值范围是( )
| A. | $({\frac{1}{2},\sqrt{e}})$ | B. | $[{\frac{1}{2},\sqrt{e}})$ | C. | $({\frac{1}{2},\frac{{\sqrt{e}}}{e}}]$ | D. | $({\frac{1}{2},\frac{{\sqrt{e}}}{e}})$ |
4.已知向量$\overrightarrow{a}$=(m,n-1)与$\overrightarrow{b}$=(2,-1)平行,则$\sqrt{{m}^{2}+{n}^{2}}$的最小值为( )
| A. | $\frac{\sqrt{2}}{2}$ | B. | $\frac{\sqrt{3}}{2}$ | C. | $\frac{\sqrt{5}}{5}$ | D. | $\frac{2\sqrt{5}}{5}$ |