题目内容

15.已知△ABC中,角A、B、C所对的边为a,b,c,向量$\overrightarrow{m}$=(a,1),$\overrightarrow{n}$=(b,2,)角C=$\frac{π}{3}$.
(1)若$\overrightarrow{m}$∥$\overrightarrow{n}$,求角A;
(2)若cosA=$\frac{1}{7}$,a=8.求b.

分析 (1)根据向量平行的条件得到2a=b,再根据正弦定理,以及两角差的正弦公式,以及三角函数值即可求出;
(2)由正弦定理和余弦定理即可求出.

解答 解:(1)∵向量$\overrightarrow{m}$=(a,1),$\overrightarrow{n}$=(b,2),$\overrightarrow{m}$∥$\overrightarrow{n}$,
∴2a=b,
∴2sinA=sinB,
∵C=$\frac{π}{3}$,
∴2sinA=sin(π-$\frac{π}{3}$-A)=sin($\frac{2π}{3}$-A)=$\frac{\sqrt{3}}{2}$cosA+$\frac{1}{2}$sinA,
∴tanA=$\frac{\sqrt{3}}{3}$,
∵0<A<π,
∴A=$\frac{π}{6}$;
(2)∵cosA=$\frac{1}{7}$,
∴sinA=$\frac{4\sqrt{3}}{7}$,
∵a=8,C=$\frac{π}{3}$,
由$\frac{a}{sinA}$=$\frac{c}{sinC}$,
得到c=$\frac{8×sin\frac{π}{3}}{sinA}$=7,
由余弦定理c2=a2+b2-2abcosC,
即b2-8b+15=0,
解得b=3,或b=5.

点评 本题考查了解三角形的问题,关键是掌握正弦定理,余弦定理,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网