题目内容
(本题满分14分)已知函数
. 
(1)是否存在实数
使函数f(x)为奇函数?证明你的结论;
(2)用单调性定义证明:不论
取任何实数,函数f(x)在其定义域上都是增函数;
(3)若函数f(x)为奇函数,解不等式
.
(1)是否存在实数
(2)用单调性定义证明:不论
(3)若函数f(x)为奇函数,解不等式
(1)当
时,函数f(x)为奇函数;(2)证明:见解析。
(3)
(3)
试题分析:(1)根据f(x)为奇函数,可确定f(-x)+f(x)=0恒成立.从而可得a值.
(2)利用单调性的定义证明分三个步骤:一取值,二作差变形判断差值符号,三确定单调性.
(3)利用单调性与奇偶性把不等式
然后利用单调性转化为
(1)
假设存在实数
由
(2)证明:任取
又
(3)由
由(2)已证得函数
不等式
点评:判定函数的奇偶性先确定定义域是否关于原点对称;利用单调性证明证明时要注意三个步骤一取值,作差变形,得出结论.变形的目的是判断差值符号.解抽象不等式要注意利用单调性脱掉法则符号f转化为普通不等式求解.
练习册系列答案
相关题目