题目内容
f(x)对任意x∈R都有f(x)+f(1-x)=
.
(Ⅰ)求f(
)和f(
)+f(
)(n∉N)的值;
(Ⅱ)数列{an}满足:an=f(0)+f(
)+f(
)+…+f(
)+f(1),数列{an}是等差数列吗?请给予证明;
(Ⅲ)令bn=
,Tn=
+
+
+…+
,Sn=32-
.试比较Tn与Sn的大小.
| 1 |
| 2 |
(Ⅰ)求f(
| 1 |
| 2 |
| 1 |
| n |
| n-1 |
| n |
(Ⅱ)数列{an}满足:an=f(0)+f(
| 1 |
| n |
| 2 |
| n |
| n-1 |
| n |
(Ⅲ)令bn=
| 4 |
| 4an-1 |
| b | 21 |
| b | 22 |
| b | 23 |
| b | 2n |
| 16 |
| n |
(Ⅰ)因为f(
) +f(1-
) =
,所以f(
) =
令x=
,得f(
) +f(1-
) =
,即f(
) +f(
)=
(Ⅱ)an=f(0)+f(
)+f(
)+…+f(
)+f(1)
又an=f(1)+f(
)+…f(
)+f(0)
两式相加 2an=[f(0)+f(1)]+[f(
+
)]+[f(1)+f(0)]=
所以an=
,n∈N
又an+1-an=
-
=
.故数列{an}是等差数列.
(Ⅲ)bn=
=
Tn=b12+b22++bn2=16(1+
+
+…
)≤16[1+
+
+…
]
=16[1+(1-
)+(
-
)+…(
-
)]
=16(2-
)=32-
=Sn.所以Tn≤Sn
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 4 |
令x=
| 1 |
| n |
| 1 |
| n |
| 1 |
| n |
| 1 |
| 2 |
| 1 |
| n |
| n-1 |
| n |
| 1 |
| 2 |
(Ⅱ)an=f(0)+f(
| 1 |
| n |
| 2 |
| n |
| n-1 |
| n |
又an=f(1)+f(
| n-1 |
| n |
| 1 |
| n |
两式相加 2an=[f(0)+f(1)]+[f(
| 1 |
| n |
| n-1 |
| n |
| n+1 |
| 2 |
所以an=
| n+1 |
| 4 |
又an+1-an=
| n+1+1 |
| 4 |
| n+1 |
| 4 |
| 1 |
| 4 |
(Ⅲ)bn=
| 4 |
| 4an-1 |
| 4 |
| n |
| 1 |
| 22 |
| 1 |
| 32 |
| 1 |
| n2 |
| 1 |
| 1×2 |
| 1 |
| 2×3 |
| 1 |
| n(n-1) |
=16[1+(1-
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| n-1 |
| 1 |
| n |
=16(2-
| 1 |
| n |
| 16 |
| n |
练习册系列答案
相关题目
定义在R上的函数f(x)对任意x∈R,都有f(x+2)=
,f(2)=
,则f(2010)等于( )
| 1-f(x) |
| 1+f(x) |
| 1 |
| 4 |
A、
| ||
B、
| ||
C、
| ||
D、
|
设偶函数f(x)对任意x∈R,都有f(x+3)=-
,且当x∈[-3,-2]时,f(x)=4x,则f(107.5)=( )
| 1 |
| f(x) |
| A、10 | ||
B、
| ||
| C、-10 | ||
D、-
|