题目内容

4.如图,在边长为4的菱形ABCD中,∠BAD=60°,DE⊥AB于点E,将△ADE沿DE折起到△A1DE的位置,使A1E⊥EB.
(1)求证:A1D⊥DC;
(2)求直线ED与平面A1BC所成角的正弦值;
(3)求二面角E-A1B-C的余弦值.

分析 (1)由题意知EA1,EB,ED两两垂直,建立空间直角坐标系,利用向量法能证明A1D⊥DC.
(2)求出直线ED向量和平面A1BC的一个法向量,利用向量法能求出直线ED与平面A1BC所成角的正弦值.
(3)求出平面EA1B的法向量和平面A1BC法向量,利用向量的数量积求解二面角E-A1B-C的余弦值.

解答 证明:(1)∵在边长为4的菱形ABCD中,∠BAD=60°,DE⊥AB于点E,
将△ADE沿DE折起到△A1DE的位置,使A1E⊥EB.
∴由题意知EA1,EB,ED两两垂直,建立空间直角坐标系,
由题意得DE=2$\sqrt{3}$,从而A1(2,0,0),B(0,2,0),C(0,4,2$\sqrt{3}$),D(0,0,2$\sqrt{3}$),
∴$\overrightarrow{{A}_{1}D}$=(-2,0,2$\sqrt{3}$),$\overrightarrow{DC}$=(0,4,0),
∵$\overrightarrow{{A}_{1}D}$•$\overrightarrow{DC}$=0,∴A1D⊥DC.
(2)设平面A1BC的一个法向量为$\overrightarrow{m}$=(x,y,z),
则$\left\{\begin{array}{l}{\overrightarrow{m}•\overrightarrow{B{A}_{1}}=2x-2y=0}\\{\overrightarrow{m}•\overrightarrow{BC}=2y+2\sqrt{3}z=0}\end{array}\right.$,令z=1,则$\overrightarrow{m}$=(-$\sqrt{3}$,-$\sqrt{3}$,1),
$\overrightarrow{ED}$=(0,0,2$\sqrt{3}$),
直线ED与平面A1BC所成角的正弦值:$|\frac{\overrightarrow{m}•\overrightarrow{ED}}{|\overrightarrow{m}||\overrightarrow{ED}|}|$=$\frac{2\sqrt{3}}{\sqrt{3+3+1}•2\sqrt{3}}$=$\frac{\sqrt{7}}{7}$.
(3)解:平面A1BE的一个向量$\overrightarrow{n}$=(0,0,1),
$\overrightarrow{{BA}_{1}}$=(2,-2,0),$\overrightarrow{BC}$=(0,2,2$\sqrt{3}$),
设平面A1BC的一个法向量为$\overrightarrow{m}$=(x,y,z),
则$\left\{\begin{array}{l}{\overrightarrow{m}•\overrightarrow{B{A}_{1}}=2x-2y=0}\\{\overrightarrow{m}•\overrightarrow{BC}=2y+2\sqrt{3}z=0}\end{array}\right.$,令z=1,则$\overrightarrow{m}$=(-$\sqrt{3}$,-$\sqrt{3}$,1),
∴cos<$\overrightarrow{m}$,$\overrightarrow{n}$>=$\frac{\overrightarrow{m}•\overrightarrow{n}}{|\overrightarrow{m}||\overrightarrow{n}|}$=$\frac{\sqrt{7}}{7}$,
∴二面角E-A1B-C的余弦值为-$\frac{\sqrt{7}}{7}$.

点评 本题考查线线垂直的证明,考查二面角的余弦值的求法,考查线段比值的求法,是中档题,解题时要认真审题,注意空间思维能力的培养.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网