题目内容
2.若向量$\overrightarrow{a}$,$\overrightarrow{b}$满足|$\overrightarrow{a}$|=$\sqrt{2}$,|$\overrightarrow{b}$|=2,($\overrightarrow{a}$-$\overrightarrow{b}$)⊥$\overrightarrow{a}$,则$\overrightarrow{a}$•$\overrightarrow{b}$=2;向量$\overrightarrow{a}$与$\overrightarrow{b}$的夹角等于45°;|2$\overrightarrow{a}$-$\overrightarrow{b}$|=2.分析 利用向量垂直的条件,向量的夹角公式,即可得出结论.
解答 解:∵向量$\overrightarrow{a}$,$\overrightarrow{b}$满足|$\overrightarrow{a}$|=$\sqrt{2}$,|$\overrightarrow{b}$|=2,($\overrightarrow{a}$-$\overrightarrow{b}$)⊥$\overrightarrow{a}$,
∴($\overrightarrow{a}$-$\overrightarrow{b}$)•$\overrightarrow{a}$=2-$\overrightarrow{a}$•$\overrightarrow{b}$=0,
∴$\overrightarrow{a}$•$\overrightarrow{b}$=2,
∴$\overrightarrow{a}$•$\overrightarrow{b}$=$\sqrt{2}•2•cos$<$\overrightarrow{a}$,$\overrightarrow{b}$>=2
∴<$\overrightarrow{a}$,$\overrightarrow{b}$>=45°.
|2$\overrightarrow{a}$-$\overrightarrow{b}$|=$\sqrt{4{\overrightarrow{a}}^{2}-4\overrightarrow{a}•\overrightarrow{b}+{\overrightarrow{b}}^{2}}$=$\sqrt{8-8+4}$=2.
故答案为:2,45°,2.
点评 本题考查向量垂直的条件,向量的夹角公式,考查学生的计算能力,属于中档题.
练习册系列答案
相关题目
13.已知直线a,b,平面α、β、γ,则下列条件中能推出α∥β的是( )
| A. | a∥α,b∥β,a∥b | B. | a⊥γ,b⊥γ,a?α,b?β | C. | a⊥α,b⊥β,a∥b | D. | a?α,b?β,a∥α,b∥β |
17.${∫}_{0}^{1}$exdx与${∫}_{0}^{1}$e${\;}^{{x}^{2}}$dx的关系为( )
| A. | ${∫}_{0}^{1}$exdx<${∫}_{0}^{1}$e${\;}^{{x}^{2}}$dx | B. | ${∫}_{0}^{1}$exdx>${∫}_{0}^{1}$e${\;}^{{x}^{2}}$dx | ||
| C. | (${∫}_{0}^{1}$exdx)2=${∫}_{0}^{1}$e${\;}^{{x}^{2}}$dx | D. | $\frac{1}{2}$${∫}_{0}^{1}$exdx=${∫}_{0}^{1}$e${\;}^{{x}^{2}}$dx |
7.数列{an}满足a1=0,an+1=$\frac{{a}_{n}-2}{\frac{5}{4}{a}_{n}-2}$,则a2015=( )
| A. | 0 | B. | $\frac{4}{3}$ | C. | 1 | D. | 2 |