题目内容

2.若向量$\overrightarrow{a}$,$\overrightarrow{b}$满足|$\overrightarrow{a}$|=$\sqrt{2}$,|$\overrightarrow{b}$|=2,($\overrightarrow{a}$-$\overrightarrow{b}$)⊥$\overrightarrow{a}$,则$\overrightarrow{a}$•$\overrightarrow{b}$=2;向量$\overrightarrow{a}$与$\overrightarrow{b}$的夹角等于45°;|2$\overrightarrow{a}$-$\overrightarrow{b}$|=2.

分析 利用向量垂直的条件,向量的夹角公式,即可得出结论.

解答 解:∵向量$\overrightarrow{a}$,$\overrightarrow{b}$满足|$\overrightarrow{a}$|=$\sqrt{2}$,|$\overrightarrow{b}$|=2,($\overrightarrow{a}$-$\overrightarrow{b}$)⊥$\overrightarrow{a}$,
∴($\overrightarrow{a}$-$\overrightarrow{b}$)•$\overrightarrow{a}$=2-$\overrightarrow{a}$•$\overrightarrow{b}$=0,
∴$\overrightarrow{a}$•$\overrightarrow{b}$=2,
∴$\overrightarrow{a}$•$\overrightarrow{b}$=$\sqrt{2}•2•cos$<$\overrightarrow{a}$,$\overrightarrow{b}$>=2
∴<$\overrightarrow{a}$,$\overrightarrow{b}$>=45°.
|2$\overrightarrow{a}$-$\overrightarrow{b}$|=$\sqrt{4{\overrightarrow{a}}^{2}-4\overrightarrow{a}•\overrightarrow{b}+{\overrightarrow{b}}^{2}}$=$\sqrt{8-8+4}$=2.
故答案为:2,45°,2.

点评 本题考查向量垂直的条件,向量的夹角公式,考查学生的计算能力,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网