题目内容
20.已知点(x,y)满足(x-1)2+(y-1)2≤1,则满足(y-x)(y-$\frac{1}{x}$)≥0的概率为( )| A. | $\frac{π}{2}$ | B. | $\frac{4}{7}$π | C. | $\frac{1}{2}$ | D. | $\frac{4}{7}$ |
分析 根据几何意义得出数学式子的图形,运用几何概率的知识判断即可.
解答
解:∵(x-1)2+(y-1)2≤1,
∴几何图形是圆心(1,1),半径为1的圆
∵(y-x)(y-$\frac{1}{x}$)≥0,
∴满足的图形位置如图阴影部分
根据对称性得出;S圆=π,
S阴影=$\frac{π}{2}$,
∴根据几何概率得出:P=$\frac{π}{\frac{2}{π}}$=$\frac{1}{2}$,
故选:C.
点评 本题考查了运用数形结合的思想解集概率问题,关键是理解代数式子的几何意义,运用几何概率的知识判断即可.
练习册系列答案
相关题目
10.设函数f(x)是定义在R上的偶函数,且对任意的x∈R,都有f(x+2)=f(x).当-1≤x≤0时,f(x)=-x2,若直线y=-x+m与函数y=f(x)的图象有两个不同的公共点,则实数m的值为( )
| A. | 2k-$\frac{1}{4}$(k∈Z) | B. | 2k+$\frac{1}{4}$(k∈Z) | C. | 2k或2k-$\frac{1}{4}$(k∈Z) | D. | 2k或2k+$\frac{1}{4}$(k∈Z) |
11.已知某几何体的三视图如图所示,则该几何体的表面积( )
| A. | 6 | B. | $6+2\sqrt{3}$ | C. | $8+8\sqrt{2}$ | D. | $4+4\sqrt{2}$ |
5.已知正三棱锥S-ABC中,E是侧棱SC的中点,且SA⊥BE,则SB与底面ABC所成角的余弦值为( )
| A. | $\frac{\sqrt{6}}{3}$ | B. | $\frac{\sqrt{3}}{3}$ | C. | $\frac{\sqrt{2}}{3}$ | D. | $\frac{\sqrt{3}}{6}$ |
9.
每年七夕,琳琅满目的饰品在各大品牌店中成为年轻人亲眯的对象,这也使各大珠宝公司挖空心思,设计出匠心独运的饰品.某珠宝公司市场专员甲对该公司的一款项链的单价x(百元)和单位时间内的销售量y(件)之间的关系作出价格分析,所得数据如下:
其中价格x(元)恰为公差为2的等差数列{an}的前5项,且等差数列{an}的前10项和为230.
(1)请根据上述数据在下列网格纸中绘制散点图;
(2)请根据表格数据计算项链的单价x(百元)和单位时间内的销售量y(件)之间的回归直线方程.
$\left\{\begin{array}{l}{\stackrel{∧}{b}=\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}•\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}=\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}}\\{\stackrel{∧}{a}=\overline{y}-\stackrel{∧}{b}\overline{x}}\end{array}\right.$.
| 单价x(百元) | a1 | a2 | a3 | a4 | a5 |
| 单位时间内销售量y(件) | 14 | 13 | 10 | 7 | 5 |
(1)请根据上述数据在下列网格纸中绘制散点图;
(2)请根据表格数据计算项链的单价x(百元)和单位时间内的销售量y(件)之间的回归直线方程.
$\left\{\begin{array}{l}{\stackrel{∧}{b}=\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}•\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}=\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}}\\{\stackrel{∧}{a}=\overline{y}-\stackrel{∧}{b}\overline{x}}\end{array}\right.$.