题目内容

11.已知当x<1时,f(x)=(2-a)x+1;当x≥1时,f(x)=ax(a>0且a≠1).若对任意x1≠x2,都有$\frac{{f({x_1})-f({x_2})}}{{{x_1}-{x_2}}}>0$成立,则a的取值范围是(  )
A.(1,2)B.$(1,\frac{3}{2}]$C.$[\frac{3}{2},2)$D.(0,1)∪(2,+∞)

分析 由题意可得f(x)在R上单调递增,分别运用一次函数和指数函数的单调性,以及单调性的定义,得到a的不等式,求交集,即可得到所求范围.

解答 解:对任意x1≠x2,都有$\frac{{f({x_1})-f({x_2})}}{{{x_1}-{x_2}}}>0$成立,
即为f(x)在R上单调递增,
由当x<1时,f(x)=(2-a)x+1,可得2-a>0,
解得a<2;①
又当x≥1时,f(x)=ax(a>0且a≠1),
可得a>1;②
又f(x)在R上单调递增,可得
2-a+1≤a,解得a≥$\frac{3}{2}$③
由①②③可得$\frac{3}{2}$≤a<2,
故选:C.

点评 本题考查函数的单调性的判断,注意运用一次函数和指数函数的单调性,以及单调性的定义,考查运算能力,属于中档题和易错题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网