题目内容
如图,在四棱锥中,底面为正方形,平面,已知, 为线段的中点.
(1)求证:平面;
(2)求四棱锥的体积.
已知圆的极坐标方程为,直线的参数方程为(为参数),点的极坐标为,设直线与圆交于点、.
(1)写出圆的直角坐标方程;
(2)求的值.
已知等差数列的公差为3,若成等比数列,则等于( )
A.-18 B.-15 C.-12 D.-9
若圆C:x2+y2-x-y-12=0上有四个不同的点到直线l:x-y+c=0的距离为2,则c的取值范围是( )
A.[-2,2] B.[-2,]
C. (-2,2) D.(-2,)
在等比数列所以中, , 则等于( )
A.或 B.或 C. D.
如图,四棱锥中,是正三角形,四边形是矩形,且平面平面,,.
(1)若点是的中点,求证:平面;
(2)若是线段的中点,求三棱锥的体积.
在正三棱锥P?ABC中,D,E分别是AB,BC的中点,下列结论:①AC⊥PB;②AC∥平面PDE;③AB⊥平面PDE,其中错误的结论个数是( )
A.0 B.1 C.2 D.3
已知a>0,b∈R,函数f(x)=4ax2﹣2bx﹣a+b,x∈[0,1].
(Ⅰ)当a=b=2时,求函数f(x)的最大值;
(Ⅱ)证明:函数f(x)的最大值|2a﹣b|+a;
(Ⅲ)证明:f(x)+|2a﹣b|+a≥0.
已知函数.
(Ⅰ)当时,求函数的单调区间;
(Ⅱ)若对任意恒成立,求实数的取值范围;
(Ⅲ)若,,求证.