题目内容
3.下列说法中错误的是( )| A. | 总体中的个体数不多时宜用简单随机抽样 | |
| B. | 系统抽样过程中,在总体均分后的每一部分中抽取一个个体,得到所需样本 | |
| C. | 百货商场的抓奖活动是抽签法 | |
| D. | 整个抽样过程中,每个个体被抽取的概率相等(有剔除时例外) |
分析 利用简单随机抽样、系统抽样的概念对A、B、C、D四个选项逐一分析即可得到答案.
解答 解:对于A,当总体中的个体数不多时宜用简单随机抽样,正确;
对于B,系统抽样过程中,在总体均分后的每一部分中抽取一个个体,得到所需样本,正确;
对于C,百货商场的抓奖活动是抽签法,正确;
对于D,整个抽样过程中,每个个体被抽取的概率相等(包括有剔除时),故“有剔除时例外”的说法错误;
故选:D.
点评 本题考查命题的真假判断与应用,突出考查简单随机抽样、系统抽样的概念及应用,属于基础题.
练习册系列答案
相关题目
13.已知集合A={x|x<2},B={x|3-2x>0},则( )
| A. | A∩B={x|x<$\frac{3}{2}$} | B. | A∩B=∅ | C. | A∪B={x|x<$\frac{3}{2}$} | D. | AUB=R |
11.
为了研究某学科成绩(满分100分)是否与学生性别有关,采用分层抽样的方法,从高二年级抽取了30名男生和20名女生的该学科成绩,得到如图所示女生成绩的茎叶图.其中抽取的男生中有21人的成绩在80分以下,规定80分以上为优秀(含80分).
(1)请根据题意,将2×2列联表补充完整;
(2)据此列联表判断,是否有90%的把握认为该学科成绩与性别有关?
附:x2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d.
(1)请根据题意,将2×2列联表补充完整;
| 优秀 | 非优秀 | 总计 | |
| 男生 | |||
| 女生 | |||
| 总计 | 50 |
附:x2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d.
| 参考数据 | 当x2≤2.706时,无充分证据判定变量A,B有关联,可以认为两变量无关联; |
| 当x2>2.706时,有90%的把握判定变量A,B有关联; | |
| 当x2>3.841时,有95%的把握判定变量A,B有关联; | |
| 当x2>6.635时,有99%的把握判定变量A,B有关联. |
18.已知复数z满足z(1+i)=2i,则z的共轭复数$\overline{z}$等于( )
| A. | 1+i | B. | 1-i | C. | -1+i | D. | -1-i |
8.下面是关于复数z=2-i的四个命题:p1:|z|=5;p2:z2=3-4i;p3:z的共轭复数为-2+i;p4:z的虚部为-1,其中真命题为( )
| A. | p2,p3 | B. | p1,p2 | C. | p2,p4 | D. | p3,p4 |
12.设A,B是椭圆C:$\frac{{x}^{2}}{3}$+$\frac{{y}^{2}}{m}$=1长轴的两个端点,若C上存在点M满足∠AMB=120°,则m的取值范围是( )
| A. | (0,1]∪[9,+∞) | B. | (0,$\sqrt{3}$]∪[9,+∞) | C. | (0,1]∪[4,+∞) | D. | (0,$\sqrt{3}$]∪[4,+∞) |