题目内容

12.设A,B是椭圆C:$\frac{{x}^{2}}{3}$+$\frac{{y}^{2}}{m}$=1长轴的两个端点,若C上存在点M满足∠AMB=120°,则m的取值范围是(  )
A.(0,1]∪[9,+∞)B.(0,$\sqrt{3}$]∪[9,+∞)C.(0,1]∪[4,+∞)D.(0,$\sqrt{3}$]∪[4,+∞)

分析 分类讨论,由要使椭圆C上存在点M满足∠AMB=120°,∠AMB≥120°,∠AMO≥60°,当假设椭圆的焦点在x轴上,tan∠AMO=$\frac{\sqrt{3}}{\sqrt{m}}$≥tan60°,当即可求得椭圆的焦点在y轴上时,m>3,tan∠AMO=$\frac{\sqrt{m}}{\sqrt{3}}$≥tan60°=$\sqrt{3}$,即可求得m的取值范围.

解答 解:假设椭圆的焦点在x轴上,则0<m<3时,
假设M位于短轴的端点时,∠AMB取最大值,要使椭圆C上存在点M满足∠AMB=120°,
∠AMB≥120°,∠AMO≥60°,tan∠AMO=$\frac{\sqrt{3}}{\sqrt{m}}$≥tan60°=$\sqrt{3}$,
解得:0<m≤1;

当椭圆的焦点在y轴上时,m>3,
假设M位于短轴的端点时,∠AMB取最大值,要使椭圆C上存在点M满足∠AMB=120°,
∠AMB≥120°,∠AMO≥60°,tan∠AMO=$\frac{\sqrt{m}}{\sqrt{3}}$≥tan60°=$\sqrt{3}$,解得:m≥9,
∴m的取值范围是(0,1]∪[9,+∞)
故选A.

点评 本题考查椭圆的标准方程,特殊角的三角函数值,考查分类讨论思想及数形结合思想的应用,考查计算能力,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网