题目内容
20.某校从高一年级随机抽取了20名学生第一学期的数学学期综合成绩和物理学期综合成绩,列表如下:| 学生序号 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
| 数学学期综合成绩 | 96 | 92 | 91 | 91 | 81 | 76 | 82 | 79 | 90 | 93 |
| 物理学期综合成绩 | 91 | 94 | 90 | 92 | 90 | 78 | 91 | 71 | 78 | 84 |
| 学生序号 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
| 数学学期综合成绩 | 68 | 72 | 79 | 70 | 64 | 61 | 63 | 66 | 53 | 59 |
| 物理学期综合成绩 | 79 | 78 | 62 | 72 | 62 | 60 | 68 | 72 | 56 | 54 |
(Ⅰ)对优秀赋分2,对不优秀赋分1,从这20名学生中随机抽取2名学生,若用ξ表示这2名学生两科赋分的和,求ξ的分布列和数学期望;
(Ⅱ)根据这次抽查数据,列出2×2列联表,能否在犯错误的概率不超过0.025的前提下认为物理成绩与数学成绩有关?
附:${K}^{2}=\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d.
| P(K2≥k0) | 0.50 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| k0 | 0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
分析 (Ⅰ)根据题意知ξ的可能取值,计算对应的概率值,写出ξ的分布列,计算数学期望值;
(Ⅱ)根据这次抽查数据,填写列联表,计算K2,即可得出结论.
解答 解:(Ⅰ)根据题意,ξ的可能取值为4,5,6,7,8;
又P(ξ=4)=$\frac{{C}_{12}^{2}}{{C}_{20}^{2}}$=$\frac{33}{95}$,P(ξ=5)=$\frac{{C}_{4}^{1}{•C}_{12}^{1}}{{C}_{20}^{2}}$=$\frac{24}{95}$,
P(ξ=6)=$\frac{{C}_{3}^{2}{+C}_{4}^{1}{•C}_{12}^{1}}{{C}_{20}^{2}}$=$\frac{27}{95}$,P(ξ=7)=$\frac{{C}_{4}^{1}{•C}_{4}^{1}}{{C}_{20}^{2}}$=$\frac{8}{95}$,
P(ξ=8)=$\frac{{C}_{4}^{2}}{{C}_{20}^{2}}$=$\frac{3}{95}$;
所以ξ的分布列为;
| ξ | 4 | 5 | 6 | 7 | 8 |
| P | $\frac{33}{95}$ | $\frac{24}{95}$ | $\frac{27}{95}$ | $\frac{8}{95}$ | $\frac{3}{95}$ |
(Ⅱ)根据这次抽查数据,列出2×2列联表如下:
| 数学优秀 | 数学不优秀 | 合计 | |
| 物理优秀 | 4 | 2 | 6 |
| 物理不优秀 | 2 | 12 | 14 |
| 合计 | 6 | 14 | 20 |
所以在犯错误的概率不超过0.025的前提下认为物理成绩与数学成绩有关.
点评 本题考查了离散型随机变量的分布列与数学期望的计算问题,也考查了独立性检验的应用问题,是中档题.
练习册系列答案
相关题目
10.葫芦岛市某高中进行一项调查:2012年至2016年本校学生人均年求学花销y(单位:万元)的数据如表:
(1)求y关于x的线性回归直线方程;
(2)利用(1)中的回归直线方程,分析2012年至2016年本校学生人均年求学花销的变化情况,并预测该地区2017年本校学生人均年求学花销情况.
附:回归直线的斜率和截距的最小二乘法估计公式分别为:
$\left\{\begin{array}{l}{\widehat{b}=\frac{\sum_{i=1}^{n}{(x}_{i}-\overline{x}){(y}_{i}-\overline{y})}{{\sum_{i=1}^{n}{(x}_{i}-\overline{x})}^{2}}=\frac{\sum_{i=1}^{n}{{x}_{i}y}_{i}-n\overline{xy}}{\sum_{i=1}^{n}{x}_{i}^{2}-n\overline{{x}^{2}}}}\\{\widehat{a}=\overline{y}-\overline{bx}}\end{array}\right.$.
| 年份 | 2012 | 2013 | 2014 | 2015 | 2016 |
| 年份代号x | 1 | 2 | 3 | 4 | 5 |
| 年求学花销y | 3.2 | 3.5 | 3.8 | 4.6 | 4.9 |
(2)利用(1)中的回归直线方程,分析2012年至2016年本校学生人均年求学花销的变化情况,并预测该地区2017年本校学生人均年求学花销情况.
附:回归直线的斜率和截距的最小二乘法估计公式分别为:
$\left\{\begin{array}{l}{\widehat{b}=\frac{\sum_{i=1}^{n}{(x}_{i}-\overline{x}){(y}_{i}-\overline{y})}{{\sum_{i=1}^{n}{(x}_{i}-\overline{x})}^{2}}=\frac{\sum_{i=1}^{n}{{x}_{i}y}_{i}-n\overline{xy}}{\sum_{i=1}^{n}{x}_{i}^{2}-n\overline{{x}^{2}}}}\\{\widehat{a}=\overline{y}-\overline{bx}}\end{array}\right.$.
11.关于渐开线和摆线的叙述,正确的是( )
| A. | 只有圆才有渐开线 | |
| B. | 渐开线和摆线的定义是一样的,只是绘图的方法不一样,所以才得到了不同的图形 | |
| C. | 正方形也可以有渐开线 | |
| D. | 对于同一个圆,如果建立的直角坐标系的位置不同,画出的渐开线形状就不同 |
8.若ξ~B(n,p),且E(ξ)=3,D(ξ)=$\frac{3}{2}$,则P(ξ=1)的值为 ( )
| A. | $\frac{3}{2}$ | B. | $\frac{1}{4}$ | C. | $\frac{1}{32}$ | D. | $\frac{1}{16}$ |
10.
函数f(x)=Asin(ωx+ϕ)的部分图象如图所示,为了得到g(x)=2sin2x的图象,则只需将f(x)的图象( )
| A. | 向右平移$\frac{π}{6}$个长度单位 | B. | 向右平移$\frac{π}{12}$个长度单位 | ||
| C. | 向左平移$\frac{π}{6}$个长度单位 | D. | 向左平移$\frac{π}{12}$个长度单位 |