题目内容
8.若ξ~B(n,p),且E(ξ)=3,D(ξ)=$\frac{3}{2}$,则P(ξ=1)的值为 ( )| A. | $\frac{3}{2}$ | B. | $\frac{1}{4}$ | C. | $\frac{1}{32}$ | D. | $\frac{1}{16}$ |
分析 由随机变量ξ~B(n,p),列出方程组np=3,且np(1-p)=$\frac{3}{2}$求出n、p的值,
再利用n次独立重复实验恰有k次发生的概率公式计算即可.
解答 解:随机变量ξ~B(n,p)且E(ξ)=3,D(ξ)=$\frac{3}{2}$,
∴np=3,且np(1-p)=$\frac{3}{2}$,
解得n=8,p=$\frac{1}{2}$;
∴P(ξ=1)=C81($\frac{1}{2}$)(1-$\frac{1}{2}$)7=$\frac{1}{32}$.
故选:C.
点评 本题考查了n次独立重复实验恰有k次发生的概率计算问题,也考查了均值与方差的计算问题,是基础题.
练习册系列答案
相关题目
3.设变量 x,y 满足约束条件$\left\{\begin{array}{l}x-y+1≥0\\ x+y≤0\\ y≥0\end{array}\right.$,则目标函数z=y-2x的最大值为( )
| A. | 0 | B. | 1 | C. | 2 | D. | 3 |
13.已知集合A={1,2,3,4},B={1,4,5,6},则A∩B=( )
| A. | {1} | B. | {1,2} | C. | {1,4} | D. | {0,1,2} |
20.某校从高一年级随机抽取了20名学生第一学期的数学学期综合成绩和物理学期综合成绩,列表如下:
规定:综合成绩不低于90分者为优秀,低于90分为不优秀.
(Ⅰ)对优秀赋分2,对不优秀赋分1,从这20名学生中随机抽取2名学生,若用ξ表示这2名学生两科赋分的和,求ξ的分布列和数学期望;
(Ⅱ)根据这次抽查数据,列出2×2列联表,能否在犯错误的概率不超过0.025的前提下认为物理成绩与数学成绩有关?
附:${K}^{2}=\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d.
| 学生序号 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
| 数学学期综合成绩 | 96 | 92 | 91 | 91 | 81 | 76 | 82 | 79 | 90 | 93 |
| 物理学期综合成绩 | 91 | 94 | 90 | 92 | 90 | 78 | 91 | 71 | 78 | 84 |
| 学生序号 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
| 数学学期综合成绩 | 68 | 72 | 79 | 70 | 64 | 61 | 63 | 66 | 53 | 59 |
| 物理学期综合成绩 | 79 | 78 | 62 | 72 | 62 | 60 | 68 | 72 | 56 | 54 |
(Ⅰ)对优秀赋分2,对不优秀赋分1,从这20名学生中随机抽取2名学生,若用ξ表示这2名学生两科赋分的和,求ξ的分布列和数学期望;
(Ⅱ)根据这次抽查数据,列出2×2列联表,能否在犯错误的概率不超过0.025的前提下认为物理成绩与数学成绩有关?
附:${K}^{2}=\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d.
| P(K2≥k0) | 0.50 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| k0 | 0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
17.若sin(θ-$\frac{π}{4}$)=$\frac{\sqrt{5}}{5}$,θ∈($\frac{3π}{4}$,$\frac{5π}{4}$),则cos(2θ+$\frac{2π}{3}$)=( )
| A. | $\frac{4+3\sqrt{3}}{10}$ | B. | -$\frac{4+3\sqrt{3}}{10}$ | C. | $\frac{3\sqrt{3}-4}{10}$ | D. | $\frac{4-3\sqrt{3}}{10}$ |