题目内容
1.若α∈(0,$\frac{π}{2}$),且sin2α+cos2α=$\frac{1}{4}$,则tanα=$\sqrt{3}$.分析 由已知利用二倍角的余弦函数公式化简可求cosα,进而利用同角三角函数基本关系式可求tanα的值.
解答 解:∵sin2α+cos2α=$\frac{1}{4}$,
∴sin2α+(cos2α-sin2α)=cos2α=$\frac{1}{4}$,
∵α∈(0,$\frac{π}{2}$),
∴cosα=$\frac{1}{2}$,sinα=$\sqrt{1-co{s}^{2}α}$=$\frac{\sqrt{3}}{2}$,
∴tanα=$\sqrt{3}$.
故答案为:$\sqrt{3}$.
点评 本题主要考查了二倍角的余弦函数公式,同角三角函数基本关系式在三角函数化简求值中的应用,考查了转化思想,属于基础题.
练习册系列答案
相关题目
2.已知变量x,y有如表中的观察数据,得到y对x的回归方程是$\widehaty=0.83x+a$,则其中a的值是( )
| x | 0 | 1 | 3 | 4 |
| y | 2.4 | 4.5 | 4.6 | 6.5 |
| A. | 2.64 | B. | 2.84 | C. | 3.95 | D. | 4.35 |
19.函数y=x2在P(1,1)处的切线与双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的一条渐近线平行,则双曲线的离心率是( )
| A. | 5 | B. | $\sqrt{5}$ | C. | $\frac{\sqrt{5}}{2}$ | D. | $\sqrt{3}$ |
6.某校高三共有男生400名,从所有高三男生中随机抽取20名男生测量身高(单位:cm)作为样本,得到频率分布表与频率分布直方图1(部分)如表:

(Ⅰ)求n1、n2、f1、f2;
(Ⅱ)试估计身高不低于180cm的该校高三男生人数,并说明理由;
(Ⅲ)从样本中不低于180cm的男生身高,绘制成茎叶图(图2);
现从身高不低于185cm的男生中任取3名参加选拔性测试,求至少有两位身高不低于190cm的概率.
| 分组 | 频数 | 频率 |
| [150,160) | 1 | |
| [160,170) | n1 | f1 |
| [170,180) | n2 | f2 |
| [180,190) | 5 | |
| [190,200] | 3 |
(Ⅰ)求n1、n2、f1、f2;
(Ⅱ)试估计身高不低于180cm的该校高三男生人数,并说明理由;
(Ⅲ)从样本中不低于180cm的男生身高,绘制成茎叶图(图2);
现从身高不低于185cm的男生中任取3名参加选拔性测试,求至少有两位身高不低于190cm的概率.
11.在(1-x)5+(1-x)6+(1-x)7+(1-x)8的展开式中,含x3的项的系数是( )
| A. | 121 | B. | -74 | C. | 74 | D. | -121 |