题目内容
设
、
不共线,点P在AB上,求证:
=λ
+μ
且λ+μ=1,λ、μ∈R.
| OA |
| OB |
| OP |
| OA |
| OB |
证明:∵P在AB上,∴
与
共线.
∴
=t
.∴
-
=t(
-
).
∴
=
+t
-t
=(1-t)
+t
.
设1-t=λ,t=μ,则
=λ
+μ
且λ+μ=1,λ、μ∈R.
| AP |
| AB |
∴
| AP |
| AB |
| OP |
| OA |
| OB |
| OA |
∴
| OP |
| OA |
| OB |
| OA |
| OA |
| OB |
设1-t=λ,t=μ,则
| OP |
| OA |
| OB |
练习册系列答案
相关题目