题目内容
某市为调研高三一轮复习质量,在2014年10月份组织了一次摸底考试,并从某校2015届高三理科学生在该次考试的数学成绩进行分析,利用分层抽样抽取90分以上的1200名学生的成绩进行分析,已知该样本的容量为20,分数用茎叶图记录如图所示(部分数据丢失),得到的频率分布表如下:
分数段(分) | |
|
|
频数 | 4 | ||
频率 | | 0.45 | 0.2 |
![]()
(Ⅰ)求表中
的值及分数在
范围内的学生人数;
(Ⅱ)从得分在
内的学生随机选2名学生的得分,求2名学生的平均分不低于140分的概率.
(Ⅰ)0.35;(Ⅱ)![]()
【解析】
试题分析:(Ⅰ)由已知可得分数在
范围内的共有
人,而在
内的有4人,
所以在
内的学生人数共有
人.在
内的共有
人,故
;(Ⅱ)由茎叶图可知得分在
范围内的成绩共有4个. 选取成绩的所有可能结果为
,
,
,
,
,
,共有6个基本事件,两个成绩之和大于
,所以可能结果为:
,
,
共3个. 所以所求事件的概率为
试题解析:(Ⅰ)由已知可得分数在
范围内的共有
人,而在
内的有4人,
所以在
内的学生人数共有
人.在
内的共有
人,
故
4分
(Ⅱ)设
表示事件“从得分在
内的学生随机选2名学生的得分,其中2名学生的平均分不低于140分”,由茎叶图可知得分在
范围内的成绩共有4个. 6分
则选取成绩的所有可能结果为
,
,
,
,
,
,
共有6个基本事件. 9分
事件
,也就是两个成绩之和大于
,所以可能结果为:
,
,
共3个. 11分
所以所求事件的概率为
12分
考点:概率与统计
(本小题满分12分)2014年7月16日,中国互联网络信息中心发布《第三十四次中国互联网发展状况报告》,报告显示:我国网络购物用户已达
亿.为了了解网购者一次性购物金额情况,某统计部门随机抽查了6月1日这一天100名网购者的网购情况,得到如下数据统计表.已知网购金额在2000元以上(不含2000元)的频率为
.
![]()
![]()
确定
,
,
,
的值,并补全频率分布直方图;
(2)为进一步了解网购金额的多少是否与网龄有关,对这100名网购者调查显示:购物金额在2000元以上的网购者中网龄3年以上的有35人,购物金额在2000元以下(含2000元)的网购者中网龄不足3年的有20人.
(1)请将列联表补充完整;
网龄3年以上 | 网龄不足3年 | 合计 | |
购物金额在2000元以上 | 35 | ||
购物金额在2000元以下 | 20 | ||
合计 | 100 |
(2)并据此列联表判断,是否有
%的把握认为网购金额超过2000元与网龄在三年以上有关?
参考数据:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
(参考公式:
,其中
)