题目内容
5.已知函数f(x)=ax+1,且f(2)=-1,则f(-2)的值为( )| A. | 1 | B. | 2 | C. | 3 | D. | 不确定 |
分析 利用已知条件求出a的值,得到函数的解析式,然后求解即可.
解答 解:函数f(x)=ax+1,且f(2)=-1,
可得2a+1=-1,解得a=-1,
是的解析式为:函数f(x)=-x+1,
f(-2)=-1×(-2)+1=3.
故选:C.
点评 本题考查函数的解析式的求法,函数值的求法,考查计算能力.
练习册系列答案
相关题目
20.在△ABC中,A,B,C成等差数列,且b2=ac,则△ABC的形状是( )
| A. | 直角三角形 | B. | 等腰直角三角形 | C. | 等腰三角形 | D. | 等边三角形 |
10.某学校组织高一高二两个年级的50名学生干部利用假期参加社会实践活动,活动内容是:①到社会福利院慰问孤寡老人;②到车站做义工,帮助需要帮助的旅客.各位同学根据各自的实际情况,选择了不同的活动项目,相关的数据如下表所示:
(1)用分层抽样的方法在到车站做义工的同学中随机抽取6名,求在高二年级的学生中应抽取几名?
(2)在(1)中抽取的6名同学中任取2名,求选到的同学为高二年级学生人数的数学期望;
(3)如果“到社会福利院慰问老人”与“到车站做义工”是两个分类变量,并且计算出随机变量K2=2.981,那么,你有多大把握认为选择到社会福利院慰问老人与到车站做义工是与年级有关系的?
| 到社会福利院慰问老人 | 到车站做义工 | 总计 | |
| 高一 | 11 | 16 | 27 |
| 高二 | 15 | 8 | 23 |
| 总计 | 26 | 24 | 50 |
(2)在(1)中抽取的6名同学中任取2名,求选到的同学为高二年级学生人数的数学期望;
(3)如果“到社会福利院慰问老人”与“到车站做义工”是两个分类变量,并且计算出随机变量K2=2.981,那么,你有多大把握认为选择到社会福利院慰问老人与到车站做义工是与年级有关系的?
| 参考数据 | P(K2≥k) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 |
| k | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 |
14.设等差数列{an}的前n项和为Sn,若S2014>0,S2015<0,则$\frac{{S}_{1}}{{a}_{1}}$,$\frac{{S}_{2}}{{a}_{2}}$,…$\frac{{S}_{2014}}{{a}_{2014}}$中最大的是( )
| A. | $\frac{S_1}{a_1}$ | B. | $\frac{{{S_{1007}}}}{{{a_{1007}}}}$ | C. | $\frac{{S}_{1008}}{{a}_{1008}}$ | D. | $\frac{{S}_{2014}}{{a}_{2014}}$ |