题目内容

15.如图,在△ABC中,∠C=60°,D是BC上一点,AB=31,BD=20,AD=21.
(1)求cos∠B的值;
(2)求sin∠BAC的值和边BC的长.

分析 (1)利用余弦定理可得cosB=$\frac{A{B}^{2}+B{D}^{2}-A{D}^{2}}{2AB•BD}$.
(2)0°<B<180°,由(1)可得:sinB=$\sqrt{1-co{s}^{2}B}$=$\frac{12\sqrt{3}}{31}$,可得sin∠BAC=sin[180°-(B+60°)]=sin(B+60°).
在△ABC中,由正弦定理可得:$\frac{BC}{sin∠BAC}$=$\frac{AB}{sin∠C}$,即可得出.

解答 解:(1)在△ABC中,cosB=$\frac{A{B}^{2}+B{D}^{2}-A{D}^{2}}{2AB•BD}$=$\frac{3{1}^{2}+2{0}^{2}-2{1}^{2}}{2×31×20}$=$\frac{23}{31}$.
(2)0°<B<180°,由(1)可得:sinB=$\sqrt{1-co{s}^{2}B}$=$\frac{12\sqrt{3}}{31}$,
∴sin∠BAC=sin[180°-(B+60°)]=sin(B+60°)=sinBcos60°+cosBsin60°=$\frac{1}{2}×\frac{12\sqrt{3}}{31}$+$\frac{23}{31}×\frac{\sqrt{3}}{2}$=$\frac{35\sqrt{3}}{62}$.
在△ABC中,由正弦定理可得:$\frac{BC}{sin∠BAC}$=$\frac{AB}{sin∠C}$,
∴BC=$\frac{ABsin∠BAC}{sin∠C}$=$\frac{31×\frac{35\sqrt{3}}{62}}{\frac{\sqrt{3}}{2}}$=35.

点评 本题考查了正弦定理余弦定理、和差公式、同角三角函数基本关系式,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网