题目内容
(12分)(2011•福建)设函数f(θ)=
,其中,角θ的顶点与坐标原点重合,始边与x轴非负半轴重合,终边经过点P(x,y),且0≤θ≤π.
(Ⅰ)若点P的坐标为
,求f(θ)的值;
(Ⅱ)若点P(x,y)为平面区域Ω:
上的一个动点,试确定角θ的取值范围,并求函数f(θ)的最小值和最大值.
(Ⅰ)若点P的坐标为
(Ⅱ)若点P(x,y)为平面区域Ω:
(Ⅰ)2(Ⅱ)
时,f(θ)取得最大值2;θ=0时,f(θ)取得最小值1
试题分析:(I)由已知中函数f(θ)=
(II)画出满足约束条件
解(I)由点P的坐标和三角函数的定义可得:
于是f(θ)=
(II)作出平面区域Ω(即感触区域ABC)如图所示
其中A(1,0),B(1,1),C(0,1)
于是0≤θ≤
∴f(θ)=
且
故当
当
点评:本题主要考查三角函数、不等式等基础知识,考查运算求解能力、推理论证能力,考查函数与方程思想、数形结合思想、化归与转化思想.
练习册系列答案
相关题目