题目内容
17.已知甲、乙、丙3名运动员击中目标的概率分别为0.7,0.8,0.85,若他们3人向目标各发1枪,则目标没有被击中的概率为0.009.分析 他们3人向目标各发1枪,则目标没有被击中是指三人同时没有击中,由此能求出目标没有被击中的概率.
解答 解:他们3人向目标各发1枪,
则目标没有被击中是指三人同时没有击中,
∵甲、乙、丙3名运动员击中目标的概率分别为0.7,0.8,0.85,他们3人向目标各发1枪,
∴目标没有被击中的概率为:
P=(1-0.7)(1-0.8)(1-0.85)=0.009.
故答案为:0.009.
点评 本题考查概率的求法,是基础题,解题时要认真审题,注意相互独立事件概率乘法公式和对立事件概率计算公式的合理运用.
练习册系列答案
相关题目
8.已知向量$\overrightarrow{m}$=(a,-2),$\overrightarrow{n}$=(1,1-a),且$\overrightarrow{m}$∥$\overrightarrow{n}$,则实数a的值为( )
| A. | 2 | B. | 2 或-1 | C. | -2或1 | D. | -2 |
4.如图是函数$y=-\sqrt{3}x+1$的大致图象,则直线$y=-\sqrt{3}x+1$的图象与x轴夹角α大小为( )

| A. | 120° | B. | 60° | C. | 30° | D. | 150° |