ÌâÄ¿ÄÚÈÝ
11£®ÒÑÖªÔÚÖ±½Ç×ø±êϵÖУ¬ÇúÏßµÄC²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}{x=1+2cos¦Õ}\\{y=1+2sin¦Õ}\end{array}\right.$£¨¦ÕΪ²ÎÊý£©£¬ÏÖÒÔÔµãΪ¼«µã£¬xÖáµÄÕý°ëÖáΪ¼«ÖὨÁ¢¼«×ø±êϵ£¬Ö±ÏßlµÄ¼«×ø±ê·½³ÌΪ¦Ñ=$\frac{4}{cos¦È-sin¦È}$£®£¨1£©ÇóÇúÏßCµÄÆÕͨ·½³ÌºÍÖ±ÏßlµÄÖ±½Ç×ø±ê·½³Ì£»
£¨2£©ÔÚÇúÏßCÉÏÊÇ·ñ´æÔÚÒ»µãP£¬Ê¹µãPµ½Ö±ÏßlµÄ¾àÀë×îС£¿Èô´æÔÚ£¬Çó³ö¾àÀëµÄ×îСֵ¼°µãPµÄÖ±½Ç×ø±ê£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®
·ÖÎö £¨1£©ÀûÓÃ×ø±êµÄ»¥»¯·½·¨£¬ÇóÇúÏßCµÄÆÕͨ·½³ÌºÍÖ±ÏßlµÄÖ±½Ç×ø±ê·½³Ì£»
£¨2£©µãPµ½Ö±ÏßlµÄ¾àÀëd=$\frac{|2cos¦Õ-2sin¦Õ-4|}{\sqrt{2}}$=$\frac{2\sqrt{2}sin£¨¦Õ-\frac{¦Ð}{4}£©+4}{\sqrt{2}}$£¬¼´¿ÉÇó³ö¾àÀëµÄ×îСֵ¼°µãPµÄÖ±½Ç×ø±ê£®
½â´ð ½â£º£¨1£©ÇúÏßµÄC²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}{x=1+2cos¦Õ}\\{y=1+2sin¦Õ}\end{array}\right.$£¨¦ÕΪ²ÎÊý£©£¬ÆÕͨ·½³ÌΪ£¨x-1£©2+£¨y-1£©2=4£¬
Ö±ÏßlµÄ¼«×ø±ê·½³ÌΪ¦Ñ=$\frac{4}{cos¦È-sin¦È}$£¬Ö±½Ç×ø±ê·½³ÌΪx-y-4=0£»
£¨2£©µãPµ½Ö±ÏßlµÄ¾àÀëd=$\frac{|2cos¦Õ-2sin¦Õ-4|}{\sqrt{2}}$=$\frac{2\sqrt{2}sin£¨¦Õ-\frac{¦Ð}{4}£©+4}{\sqrt{2}}$£¬
¡à¦Õ-$\frac{¦Ð}{4}$=2k¦Ð-$\frac{¦Ð}{2}$£¬¼´¦Õ=2k¦Ð-$\frac{¦Ð}{4}$£¨k¡ÊZ£©£¬¾àÀëµÄ×îСֵΪ2$\sqrt{2}$-2£¬µãPµÄÖ±½Ç×ø±ê£¨1+$\sqrt{2}$£¬1-$\sqrt{2}$£©£®
µãÆÀ ±¾Ì⿼²éÈýÖÖ·½³ÌµÄ»¥»¯£¬¿¼²é²ÎÊý·½³ÌµÄÔËÓã¬ÊôÓÚÖеµÌ⣮
| A£® | y=¡À$\sqrt{2}$x | B£® | y=¡À$\frac{\sqrt{2}}{2}$x | C£® | y=¡À2x | D£® | y=¡À$\frac{1}{2}$x |
| A£® | £¨-¡Þ£¬0£© | B£® | £¨-48£¬0£© | C£® | £¨-192£¬0£© | D£® | £¨-60£¬-48£© |