题目内容
已知函数f(x)=ax,g(x)=b•2x的图象都经过点A(4,8),数列{an}满足:a1=1,an=f(an-1)+g(n)(n≥2).
(Ⅰ)求a,b的值;
(Ⅱ)求证:数列{
}是等差数列,并求数列{an}的通项公式;
(Ⅲ)求证:
+
+…+
<
.
(Ⅰ)求a,b的值;
(Ⅱ)求证:数列{
| an |
| 2n-1 |
(Ⅲ)求证:
| 1 |
| a1 |
| 1 |
| a2 |
| 1 |
| an |
| 3 |
| 2 |
考点:数列与不等式的综合
专题:等差数列与等比数列
分析:(Ⅰ)由题意列出方程即可求得;
(Ⅱ)由(Ⅰ)求得an=f(an-1)+g(n)=2an-1+2n-1,即an=2an-1+2n-1,两边同除以2n-1得
-
=1,即可得出结论;
(Ⅲ)当n=1时,
=
=1<
,当n≥2时,
=
≤
=
利用不等式放缩可得
+
+…+
≤1+
+
+…+
=1+
=
-
<
.
(Ⅱ)由(Ⅰ)求得an=f(an-1)+g(n)=2an-1+2n-1,即an=2an-1+2n-1,两边同除以2n-1得
| an |
| 2n-1 |
| an-1 |
| 2n-2 |
(Ⅲ)当n=1时,
| 1 |
| a1 |
| 1 |
| 1×21-1 |
| 3 |
| 2 |
| 1 |
| an |
| 1 |
| n2n-1 |
| 1 |
| 2•2n-1 |
| 1 |
| 2n |
| 1 |
| a1 |
| 1 |
| a2 |
| 1 |
| an |
| 1 |
| 22 |
| 1 |
| 23 |
| 1 |
| 2n |
| ||||
1-
|
| 3 |
| 2 |
| 1 |
| 2n |
| 3 |
| 2 |
解答:
解:(Ⅰ)∵函数f(x)=ax,g(x)=b•2x的图象都经过点A(4,8),
∴
解得a=2,b=
.
(Ⅱ)由(Ⅰ)得f(x)=2x,g(x)=2x-1,
∴an=f(an-1)+g(n)=2an-1+2n-1,即an=2an-1+2n-1,
两边同除以2n-1得
-
=1,又
=1,
∴数列{
}是首项和公差都为1的等差数列.
∴
=n,an=n2n-1.
(Ⅲ)∵an=n2n-1.∴
=
①当n=1时,
=
=1<
,
②当n≥2时,
=
≤
=
∴
+
+…+
≤1+
+
+…+
=1+
=
-
<
,
综上所述
+
+…+
<
对一切正整数n都成立.
∴
|
| 1 |
| 2 |
(Ⅱ)由(Ⅰ)得f(x)=2x,g(x)=2x-1,
∴an=f(an-1)+g(n)=2an-1+2n-1,即an=2an-1+2n-1,
两边同除以2n-1得
| an |
| 2n-1 |
| an-1 |
| 2n-2 |
| a1 |
| 21-1 |
∴数列{
| an |
| 2n-1 |
∴
| an |
| 2n-1 |
(Ⅲ)∵an=n2n-1.∴
| 1 |
| an |
| 1 |
| n2n-1 |
①当n=1时,
| 1 |
| a1 |
| 1 |
| 1×21-1 |
| 3 |
| 2 |
②当n≥2时,
| 1 |
| an |
| 1 |
| n2n-1 |
| 1 |
| 2•2n-1 |
| 1 |
| 2n |
∴
| 1 |
| a1 |
| 1 |
| a2 |
| 1 |
| an |
| 1 |
| 22 |
| 1 |
| 23 |
| 1 |
| 2n |
| ||||
1-
|
| 3 |
| 2 |
| 1 |
| 2n |
| 3 |
| 2 |
综上所述
| 1 |
| a1 |
| 1 |
| a2 |
| 1 |
| an |
| 3 |
| 2 |
点评:本题主要考查等差数列的定义及利用方程思想、不等式放缩思想解决问题的方法,考查学生的分析问题,解决问题的能力及运算求解能力,逻辑性强,属难题.
练习册系列答案
相关题目