题目内容

数列{an}满足a1=a2=1.an+2=an+1+an(n∈N+),则an=
 
考点:数列递推式
专题:等差数列与等比数列
分析:首先构造一个等比数列,设an+1+xan=y(an+xan-1),则有an+1=(y-x)an+xyan-1,由an+2=an+1+an(n∈N+),得an+1=an+an-1,n≥2,从而得到an+1+
5
-1
2
an=
5
+1
2
(an+
5
-1
2
an-1)
,由此能求出结果.
解答: 解:首先构造一个等比数列,设an+1+xan=y(an+xan-1),
则有an+1=(y-x)an+xyan-1,①
∵an+2=an+1+an(n∈N+),∴an+1=an+an-1,n≥2,②
由①②,得
y-x=1
xy=1
,解得
x=
5
-1
2
y=
5
+1
2
x=
-1-
5
2
y=
1-
5
2

取前一解,有an+1+
5
-1
2
an=
5
+1
2
(an+
5
-1
2
an-1)

bn=an+1+
5
-1
2
an
,则bn=
5
+1
2
bn-1

∴数列{bn}为等比数列,首项b1=1+
5
-1
2
=
5
+1
2
,公比q=
5
+1
2

∴bn=(
5
+1
2
n,即an+1+
5
-1
2
an=(
5
+1
2
)n
,③
再次构造等比数列,设an+1+x(
5
+1
2
)n+1
=
1-
5
2
[an+x(
5
+1
2
)n]

则有an+1=
1-
5
2
an+(
5
+1
2
)n(-
5
x)

对照③式,得-
5
x=1
,∴x=-
5
5

于是an+1-
5
5
(
5
+1
2
)n+1
=
1-
5
2
[an-
5
5
(
5
+1
2
)n]

cn=an-
5
5
(
5
+1
2
)n+1
,则有数列{cn}为等比数列,
首项为c1=
5-
5
10
,公比为
1-
5
2

∴cn=
5-
5
10
(
1-
5
2
)n-1
=-
5
5
(
1-
5
2
)n

an=
5
5
(
5
+1
2
)n-
5
5
(
1-
5
2
)n

故答案为:
5
5
(
5
+1
2
)n-
5
5
(
1-
5
2
)n
点评:本题考查数列的通项公式的求法,解题时要认真审题,注意构造法的合理运用.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网