题目内容
数列{an}满足a1=a2=1.an+2=an+1+an(n∈N+),则an= .
考点:数列递推式
专题:等差数列与等比数列
分析:首先构造一个等比数列,设an+1+xan=y(an+xan-1),则有an+1=(y-x)an+xyan-1,由an+2=an+1+an(n∈N+),得an+1=an+an-1,n≥2,从而得到an+1+
an=
(an+
an-1),由此能求出结果.
| ||
| 2 |
| ||
| 2 |
| ||
| 2 |
解答:
解:首先构造一个等比数列,设an+1+xan=y(an+xan-1),
则有an+1=(y-x)an+xyan-1,①
∵an+2=an+1+an(n∈N+),∴an+1=an+an-1,n≥2,②
由①②,得
,解得
或
,
取前一解,有an+1+
an=
(an+
an-1),
设bn=an+1+
an,则bn=
bn-1,
∴数列{bn}为等比数列,首项b1=1+
=
,公比q=
,
∴bn=(
)n,即an+1+
an=(
)n,③
再次构造等比数列,设an+1+x(
)n+1=
[an+x(
)n],
则有an+1=
an+(
)n(-
x),
对照③式,得-
x=1,∴x=-
,
于是an+1-
(
)n+1=
[an-
(
)n],
设cn=an-
(
)n+1,则有数列{cn}为等比数列,
首项为c1=
,公比为
,
∴cn=
(
)n-1=-
(
)n,
∴an=
(
)n-
(
)n.
故答案为:
(
)n-
(
)n
则有an+1=(y-x)an+xyan-1,①
∵an+2=an+1+an(n∈N+),∴an+1=an+an-1,n≥2,②
由①②,得
|
|
|
取前一解,有an+1+
| ||
| 2 |
| ||
| 2 |
| ||
| 2 |
设bn=an+1+
| ||
| 2 |
| ||
| 2 |
∴数列{bn}为等比数列,首项b1=1+
| ||
| 2 |
| ||
| 2 |
| ||
| 2 |
∴bn=(
| ||
| 2 |
| ||
| 2 |
| ||
| 2 |
再次构造等比数列,设an+1+x(
| ||
| 2 |
1-
| ||
| 2 |
| ||
| 2 |
则有an+1=
1-
| ||
| 2 |
| ||
| 2 |
| 5 |
对照③式,得-
| 5 |
| ||
| 5 |
于是an+1-
| ||
| 5 |
| ||
| 2 |
1-
| ||
| 2 |
| ||
| 5 |
| ||
| 2 |
设cn=an-
| ||
| 5 |
| ||
| 2 |
首项为c1=
5-
| ||
| 10 |
1-
| ||
| 2 |
∴cn=
5-
| ||
| 10 |
1-
| ||
| 2 |
| ||
| 5 |
1-
| ||
| 2 |
∴an=
| ||
| 5 |
| ||
| 2 |
| ||
| 5 |
1-
| ||
| 2 |
故答案为:
| ||
| 5 |
| ||
| 2 |
| ||
| 5 |
1-
| ||
| 2 |
点评:本题考查数列的通项公式的求法,解题时要认真审题,注意构造法的合理运用.
练习册系列答案
相关题目
函数f(x)=Asin(2x+φ)(A,φ∈R)的部分图象如图所示,那么f(
)=( )

| π |
| 6 |
| A、1 | ||||
B、
| ||||
C、
| ||||
D、
|
已知函数f(x)=
,把函数g(x)=f(x)-x的零点按照从大到小的顺序排成一个数列{an}
,则该数列的通项公式为( )
|
,则该数列的通项公式为( )
| A、an=n-1(n∈N*) |
| B、an=n(n∈N*) |
| C、an=n(n-1)(n∈N*) |
| D、an=2n-2(n∈N*) |
m=1是直线2mx+4y+16=0和直线x+(1+m)y+m-2=0平行的( )
| A、充分不必要条件 |
| B、必要不充分条件 |
| C、充分必要条件 |
| D、既不充分也不必要条件 |