题目内容
19.已知抛物线C:y2=4x的焦点为F,过点F的直线与抛物线交于A、B两点,若|AB|=6,则线段AB的中点M的横坐标为( )| A. | 2 | B. | 4 | C. | 5 | D. | 6 |
分析 先根据抛物线方程求出p的值,再由抛物线的性质可得到答案.
解答 解:∵抛物线y2=4x,∴p=2,
设经过点F的直线与抛物线相交于A、B两点,
其横坐标分别为x1,x2,利用抛物线定义,
AB中点横坐标为x0=$\frac{1}{2}$(x1+x2)=$\frac{1}{2}$(|AB|-p)=2,
故选A.
点评 本题考查抛物线的性质和应用,解题时要认真审题,仔细解答,注意挖掘题设中的隐含条件,积累解题方法.
练习册系列答案
相关题目
9.
某省电视台为了解该省卫视一档成语类节目的收视情况,抽查东西两部各5个城市,得到观看该节目的人数(单位:千人)如下茎叶图所示:
其中一个数字被污损.
(1)求东部各城市观看该节目观众平均人数超过西部各城市观看该节目观众平均人数的概率.
(2)随着节目的播出,极大激发了观众对成语知识的学习积累的热情,从中获益匪浅.现从观看该节目的观众中随机统计了4位观众的周均学习成语知识的时间y(单位:小时)与年龄x(单位:岁),并制作了对照表(如表所示)
由表中数据,试求线性回归方程$\stackrel{∧}{y}$=$\stackrel{∧}{b}$x+$\stackrel{∧}{a}$,并预测年龄为55岁观众周均学习成语知识时间.
参考公式:$\stackrel{∧}{b}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{x}^{2}}$,$\stackrel{∧}{a}$=$\overline{y}$-$\stackrel{∧}{b}$x.
其中一个数字被污损.
(1)求东部各城市观看该节目观众平均人数超过西部各城市观看该节目观众平均人数的概率.
(2)随着节目的播出,极大激发了观众对成语知识的学习积累的热情,从中获益匪浅.现从观看该节目的观众中随机统计了4位观众的周均学习成语知识的时间y(单位:小时)与年龄x(单位:岁),并制作了对照表(如表所示)
| 年龄x(岁) | 20 | 30 | 40 | 50 |
| 周均学习成语知识时间y(小时) | 2.5 | 3 | 4 | 4.5 |
参考公式:$\stackrel{∧}{b}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{x}^{2}}$,$\stackrel{∧}{a}$=$\overline{y}$-$\stackrel{∧}{b}$x.
14.设x,y∈R,则“x≠1或y≠1”是“xy≠1”的( )
| A. | 充分不必要条件 | B. | 必要而不充分条件 | ||
| C. | 充分必要条件 | D. | 既不充分也必要条件 |
11.设$\overrightarrow{a}$,$\overrightarrow{b}$是平面上的两个单位向量,$\overrightarrow{a}$•$\overrightarrow{b}$=$\frac{3}{5}$.若m∈R,则|$\overrightarrow{a}$+m$\overrightarrow{b}$|的最小值是( )
| A. | $\frac{3}{4}$ | B. | $\frac{4}{3}$ | C. | $\frac{4}{5}$ | D. | $\frac{5}{4}$ |
8.
某大学为调研学生在A,B两家餐厅用餐的满意度,从在A,B两家餐厅都用过餐的学生中随机抽取了100人,每人分别对这两家餐厅进行评分,满分均为60分.整理评分数据,将分数以10为组距分成6组:[0,10),[10,20),[20,30),[30,40),[40,50),[50,60],得到A餐厅分数的频率分布直方图,和B餐厅分数的频数分布表:
(Ⅰ)在抽样的100人中,求对A餐厅评分低于30的人数;
(Ⅱ)从对B餐厅评分在[0,20)范围内的人中随机选出2人,求2人中恰有1人评分在[0,10)范围内的概率;
(Ⅲ)如果从A,B两家餐厅中选择一家用餐,你会选择哪一家?说明理由.
| B餐厅分数频数分布表 | |
| 分数区间 | 频数 |
| [0,10) | 2 |
| [10,20) | 3 |
| [20,30) | 5 |
| [30,40) | 15 |
| [40,50) | 40 |
| [50,60] | 35 |
(Ⅱ)从对B餐厅评分在[0,20)范围内的人中随机选出2人,求2人中恰有1人评分在[0,10)范围内的概率;
(Ⅲ)如果从A,B两家餐厅中选择一家用餐,你会选择哪一家?说明理由.