题目内容

12.已知F1、F2是椭圆和双曲线的公共焦点,P是他们的一个公共点,且∠F1PF2=$\frac{π}{3}$,则椭圆和双曲线的离心率之积的最小值为(  )
A.$\sqrt{3}$B.$\frac{\sqrt{3}}{3}$C.$\frac{\sqrt{3}}{2}$D.1

分析 先设椭圆的长半轴长为a1,双曲线的半实轴长a2,焦距2c.因为涉及椭圆及双曲线离心率的问题,所以需要找a1,a2,c之间的关系,而根据椭圆及双曲线的定义可以用a1,a2表示出|PF1|,|PF2|,在△F1PF2中根据余弦定理可得到$\frac{1}{{{e}_{1}}^{2}}+\frac{3}{{{e}_{2}}^{2}}=4$,利用基本不等式可得结论.

解答 解:如图,设椭圆的长半轴长为a1,双曲线的半实轴长为a2,则根据椭圆及双曲线的定义:
|PF1|+|PF2|=2a1,|PF1|-|PF2|=2a2
∴|PF1|=a1+a2,|PF2|=a1-a2
设|F1F2|=2c,∠F1PF2=$\frac{π}{3}$,则:
在△PF1F2中由余弦定理得,
4c2=(a1+a22+(a1-a22-2(a1+a2)(a1-a2)cos$\frac{π}{3}$
∴化简得:a12+3a22=4c2
$\frac{1}{{{e}_{1}}^{2}}+\frac{3}{{{e}_{2}}^{2}}=4$,又因为$\frac{1}{{{e}_{1}}^{2}}+\frac{3}{{{e}_{2}}^{2}}≥2\frac{\sqrt{3}}{{e}_{1}{e}_{2}}$,∴e1e2≥$\frac{\sqrt{3}}{2}$,
故选:C

点评 本题考查圆锥曲线的共同特征,考查通过椭圆与双曲线的定义求焦点三角形三边长,解决本题的关键是根据所得出的条件灵活变形,求出焦点三角形的边长来,属于难题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网