题目内容

计算:
(1)6sin(-90°)+3sin0°-8sin270°+12cos180°;
(2)10cos270°+4sin0°+9tan0°+15cos360°;
(3)2cos
π
2
-tan
π
4
+
3
4
tan2
π
6
-sin
π
6
-cos2
π
6
+sin
2

(4)sin2
π
3
+cos4
2
-tan2
π
3
考点:运用诱导公式化简求值
专题:三角函数的求值
分析:原式各项利用特殊角的三角函数值计算即可求出值.
解答: 解:(1)6sin(-90°)+3sin0°-8sin270°+12cos180°=-6+0+8-12=-18+8=-10;
(2)10cos270°+4sin0°+9tan0°+15cos360°=0+0+0+15=15;
(3)2cos
π
2
-tan
π
4
+
3
4
tan2
π
6
-sin
π
6
-cos2
π
6
+sin
2
=0-1+
1
4
-
1
2
-
3
4
-1=-3;
(4)sin2
π
3
+cos4
2
-tan2
π
3
=
3
4
+1-3=-1
1
4
点评:此题考查了运用诱导公式化简求值,熟练掌握诱导公式是解本题的关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网