题目内容
14.若复数z满足$\frac{1-z}{1+z}=i$,则|$\overline{z}$-2|的值为$\sqrt{5}$.分析 把已知等式变形,再由复数代数形式的乘除运算化简复数z,求出$\overline{z}$,再由复数求模公式计算得答案.
解答 解:由$\frac{1-z}{1+z}=i$,
得$z=\frac{1-i}{1+i}=\frac{(1-i)^{2}}{(1+i)(1-i)}=\frac{-2i}{2}=-i$,
∴$\overline{z}=i$.
∴|$\overline{z}$-2|=$|i-2|=\sqrt{1+(-2)^{2}}=\sqrt{5}$.
故答案为:$\sqrt{5}$.
点评 本题考查了复数代数形式的乘除运算,考查了复数模的求法,是基础题.
练习册系列答案
相关题目
4.设是定义在R上的偶函数,且f(x+2)=f(2-x)时,当x∈[-2,0]时,$f(x)={(\frac{{\sqrt{2}}}{2})^x}-1$,若(-2,6)在区间内关于x的方程xf(x)-loga(x+2)=0(a>0且a≠1)有且只有4个不同的根,则实数a的范围是( )
| A. | $(\frac{1}{4},1)$ | B. | (1,4) | C. | (1,8) | D. | (8,+∞) |
5.若函数f(a)=$\int_0^a{({2+sinx})dx}$,则$f({\frac{π}{2}})$等于( )
| A. | 1 | B. | 0 | C. | π+1 | D. | 1-cos1 |
2.若函数y=2sinωx(ω>0)在区间(-$\frac{π}{6}$,$\frac{π}{3}$)上只有一个极值点,则ω的取值范围是( )
| A. | 1≤ω≤$\frac{3}{2}$ | B. | $\frac{3}{2}$<ω≤3 | C. | 3≤ω<4 | D. | $\frac{3}{2}$≤ω<$\frac{9}{2}$ |
19.为了响应国家号召,某企业节能降耗技术改造后,在生产某产品过程中的产量x(吨)与相应的生产能耗y(吨)的几组对应数据如表所示:
若根据表中数据得出y关于x的线性回归方程为y=0.7x+a,若生产7吨产品,预计相应的生产能耗为5.25吨.
| x | 3 | 4 | 5 | 6 |
| y | 2.5 | 3 | 4 | 4.5 |
6.定义在R上的函数f(x)的导函数是f′(x),若f(x)=f(2-x),且当x∈(-∞,1)时,(x-1)f′(x)<0设a=f($\frac{1}{e}$),b=f($\sqrt{2}$),c=f(log28),则( )
| A. | c<a<b | B. | a>b>c | C. | a<b<c | D. | a<c<b |
8.已知方程x2+(4+i)x+4+ai=0(a∈R)有实根b,且z=a+bi,则复数z的共轭复数等于( )
| A. | 2-2i | B. | 2+2i | C. | -2+2i | D. | -2-2i |