题目内容

2.已知x∈(0,+∞)时,不等式9x-m•3x+m+1>0恒成立,则m的取值范围是(  )
A.2-2$\sqrt{2}$<m<2+2$\sqrt{2}$B.m<2C.m<2+2$\sqrt{2}$D.m$≥2+2\sqrt{2}$

分析 分离参数m,原不等式恒成立转化为m<(3x-1)+$\frac{2{•3}^{x}}{{3}^{x}-1}$=(3x-1)+$\frac{2}{{3}^{x}-1}$+2(0<x<∞)恒成立,构造函数g(x)=(3x-1)+$\frac{2}{{3}^{x}-1}$+2(0<x<∞),利用基本不等式可求得g(x)min,从而可得m的取值范围.

解答 解:由9x-m•3x+m+1>0得:m(3x-1)<9x+1=(3x-1)2+2•3x
∵x∈(0,+∞),
∴3x>1,即3x-1>0,
∴m<(3x-1)+$\frac{2{•3}^{x}}{{3}^{x}-1}$=(3x-1)+$\frac{2{(3}^{x}-1)+2}{{3}^{x}-1}$
=(3x-1)+$\frac{2}{{3}^{x}-1}$+2(0<x<∞)恒成立,
令g(x)=(3x-1)+$\frac{2}{{3}^{x}-1}$+2(0<x<∞),
则m<g(x)min
∵(3x-1)+$\frac{2}{{3}^{x}-1}$+2≥2$\sqrt{{(3}^{x}-1)•\frac{2}{{3}^{x}-1}}$+2=2$\sqrt{2}$+2(当且仅当3x-1=$\frac{2}{{3}^{x}-1}$,
即x=log3($\sqrt{2}$+1)时取等号),
∴g(x)min=2$\sqrt{2}$+2,
∴m<2$\sqrt{2}$+2,
故选:C.

点评 本题考查函数恒成立问题,分离参数m是关键,考查构造函数思想与等价转化思想,突出考查构造法与基本不等式的综合运用,属于难题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网