题目内容
设数列{an}的前n项和为Sn,且Sn=2an-n2+3n-2(n∈N*).
(Ⅰ)求证:数列{an+2n}为等比数列,并求数列{an}的通项公式;
(Ⅱ)若bn=
,求数列{bn}的前n项和Bn;
(Ⅲ)若cn=
,数列{cn}的前n项和为Tn,求证:Tn<
.
(Ⅰ)求证:数列{an+2n}为等比数列,并求数列{an}的通项公式;
(Ⅱ)若bn=
| Sn+n2 |
| an+2n |
(Ⅲ)若cn=
| 1 |
| an-2 |
| 3 |
| 4 |
考点:数列的求和,数列递推式
专题:等差数列与等比数列
分析:(Ⅰ)由已知条件得an=2an-2an-1-2n+4,从而an+2n+2[an-1+2(n-1)],又当n=1时,a1=0,由此能证明{an+2n}是以2为首项,2为公比的等比数列,从而求出an=2n-2n.
(Ⅱ)由bn=2-
,利用分组求和法和错位相减法能求出数列{bn}的前n项和Bn.
(Ⅲ)当n=1时,T1=
<
,当n≥2时,2n+2-2(n+2)>2[2n+1-2(n+1)]>…>2n(22-4)=0,由此能证明Tn<
.
(Ⅱ)由bn=2-
| n+2 |
| 2n |
(Ⅲ)当n=1时,T1=
| 1 |
| 2 |
| 3 |
| 4 |
| 3 |
| 4 |
解答:
(Ⅰ)证明:∵Sn=2an-n2+3n-2,
当n≥2时,Sn-1=2an-1-(n-1)2+3(n-1)-2,
∴an=2an-2an-1-2n+4,
∴an+2n+2[an-1+2(n-1)],
又当n=1时,a1=0,
∴{an+2n}是以2为首项,2为公比的等比数列,
∴an=2n-2n.
(Ⅱ)解:由(Ⅰ)得Sn=2n+1-n2-n-2,
bn=2-
,
∴Bn=2n-(
+
+…+
),
设Dn=
+
+…+
,①
则2Dn=3+
+…+
+
,②
②-①,得Dn=3+
+…+
-
=4-
-
=4-
,
∴Bn=2n-4+
.
(Ⅲ)证明:当n=1时,T1=
<
,
当n≥2时,∵2n+2-2(n+2)>2[2n+1-2(n+1)],
∴2n+2-2(n+2)>2[2n+1-2(n+1)]>…>2n(22-4)=0,
∴cn=
<
=
cn-1,
又c2=
,∴当n≥2时,cn≤(
)n-2c2=(
)n+1,
∴当n≥2时,Tn=
+
+…+
≤
+
+…+
=
+
-(
)n+1<
,
∴Tn<
.
当n≥2时,Sn-1=2an-1-(n-1)2+3(n-1)-2,
∴an=2an-2an-1-2n+4,
∴an+2n+2[an-1+2(n-1)],
又当n=1时,a1=0,
∴{an+2n}是以2为首项,2为公比的等比数列,
∴an=2n-2n.
(Ⅱ)解:由(Ⅰ)得Sn=2n+1-n2-n-2,
bn=2-
| n+2 |
| 2n |
∴Bn=2n-(
| 3 |
| 2 |
| 4 |
| 22 |
| n+2 |
| 2n |
设Dn=
| 3 |
| 2 |
| 4 |
| 22 |
| n+2 |
| 2n |
则2Dn=3+
| 4 |
| 2 |
| n+1 |
| 2n-2 |
| n+2 |
| 2n-1 |
②-①,得Dn=3+
| 1 |
| 2 |
| 1 |
| 2n-1 |
| n+2 |
| 2n |
=4-
| 1 |
| 2n-1 |
| n+2 |
| 2n |
=4-
| n+4 |
| 2n |
∴Bn=2n-4+
| n+4 |
| 2n |
(Ⅲ)证明:当n=1时,T1=
| 1 |
| 2 |
| 3 |
| 4 |
当n≥2时,∵2n+2-2(n+2)>2[2n+1-2(n+1)],
∴2n+2-2(n+2)>2[2n+1-2(n+1)]>…>2n(22-4)=0,
∴cn=
| 1 |
| 2n+2-2(n+2) |
| 1 |
| 2[2n+1-2(n+1)] |
| 1 |
| 2 |
又c2=
| 1 |
| 8 |
| 1 |
| 2 |
| 1 |
| 2 |
∴当n≥2时,Tn=
| 1 |
| 2 |
| 1 |
| 8 |
| 1 |
| 2n+2-2(n+2) |
≤
| 1 |
| 2 |
| 1 |
| 8 |
| 1 |
| 2n+1 |
=
| 1 |
| 2 |
| 1 |
| 4 |
| 1 |
| 2 |
| 3 |
| 4 |
∴Tn<
| 3 |
| 4 |
点评:本题考查等比数列的证明,考查数列的通项公式和前n项和公式的求法,考查不等式的证明,解题时要认真审题,注意错位相减法的合理运用.
练习册系列答案
相关题目
设随机变量ξ~N(0,1),记Φ(x)=P(ξ<x),则P(-1<ξ<1)等于( )
A、
| ||
| B、2Φ(-1)-1 | ||
| C、2Φ(1)-1 | ||
| D、Φ(1)+Φ(-1) |