题目内容

设数列{an}的前n项和为Sn,且Sn=2an-n2+3n-2(n∈N*).
(Ⅰ)求证:数列{an+2n}为等比数列,并求数列{an}的通项公式;
(Ⅱ)若bn=
Sn+n2
an+2n
,求数列{bn}的前n项和Bn
(Ⅲ)若cn=
1
an-2
,数列{cn}的前n项和为Tn,求证:Tn
3
4
考点:数列的求和,数列递推式
专题:等差数列与等比数列
分析:(Ⅰ)由已知条件得an=2an-2an-1-2n+4,从而an+2n+2[an-1+2(n-1)],又当n=1时,a1=0,由此能证明{an+2n}是以2为首项,2为公比的等比数列,从而求出an=2n-2n
(Ⅱ)由bn=2-
n+2
2n
,利用分组求和法和错位相减法能求出数列{bn}的前n项和Bn
(Ⅲ)当n=1时,T1=
1
2
3
4
,当n≥2时,2n+2-2(n+2)>2[2n+1-2(n+1)]>…>2n(22-4)=0,由此能证明Tn
3
4
解答: (Ⅰ)证明:∵Sn=2an-n2+3n-2
当n≥2时,Sn-1=2an-1-(n-1)2+3(n-1)-2
∴an=2an-2an-1-2n+4,
∴an+2n+2[an-1+2(n-1)],
又当n=1时,a1=0,
∴{an+2n}是以2为首项,2为公比的等比数列,
an=2n-2n
(Ⅱ)解:由(Ⅰ)得Sn=2n+1-n2-n-2
bn=2-
n+2
2n

Bn=2n-(
3
2
+
4
22
+…+
n+2
2n
)

Dn=
3
2
+
4
22
+…+
n+2
2n
,①
2Dn=3+
4
2
+…+
n+1
2n-2
+
n+2
2n-1
,②
②-①,得Dn=3+
1
2
+…+
1
2n-1
-
n+2
2n

=4-
1
2n-1
-
n+2
2n

=4-
n+4
2n

Bn=2n-4+
n+4
2n

(Ⅲ)证明:当n=1时,T1=
1
2
3
4

当n≥2时,∵2n+2-2(n+2)>2[2n+1-2(n+1)],
∴2n+2-2(n+2)>2[2n+1-2(n+1)]>…>2n(22-4)=0,
cn=
1
2n+2-2(n+2)
1
2[2n+1-2(n+1)]
=
1
2
cn-1

c2=
1
8
,∴当n≥2时,cn≤(
1
2
)n-2c2=(
1
2
)n+1

∴当n≥2时,Tn=
1
2
+
1
8
+…+
1
2n+2-2(n+2)

1
2
+
1
8
+…+
1
2n+1

=
1
2
+
1
4
-(
1
2
)n+1
3
4

Tn
3
4
点评:本题考查等比数列的证明,考查数列的通项公式和前n项和公式的求法,考查不等式的证明,解题时要认真审题,注意错位相减法的合理运用.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网