ÌâÄ¿ÄÚÈÝ

9£®Èçͼ£¬ÔÚÆ½ÃæÖ±½Ç×ø±êϵxOyÖУ¬½¹µãÔÚxÖáÉϵÄÍÖÔ²C£º$\frac{{x}^{2}}{8}$+$\frac{{y}^{2}}{{b}^{2}}$=1¾­¹ýµã£¨b£¬2e£©£¬ÆäÖÐeΪÍÖÔ²CµÄÀëÐÄÂÊ£®¹ýµãT£¨1£¬0£©×÷бÂÊΪk£¨k£¾0£©µÄÖ±Ïßl½»ÍÖÔ²CÓÚA£¬BÁ½µã£¨AÔÚxÖáÏ·½£©£®
£¨1£©ÇóÍÖÔ²CµÄ±ê×¼·½³Ì£»
£¨2£©¹ýµãOÇÒÆ½ÐÐÓÚlµÄÖ±Ïß½»ÍÖÔ²CÓÚµãM£¬N£¬Çó $\frac{AT•BT}{MN2}$ µÄÖµ£»
£¨3£©¼ÇÖ±ÏßlÓëyÖáµÄ½»µãΪP£®Èô$\overrightarrow{AP}$=$\frac{2}{5}$$\overrightarrow{TB}$£¬ÇóÖ±ÏßlµÄбÂÊk£®

·ÖÎö £¨1£©ÓÉÌâÒâµÃe2=$\frac{{c}^{2}}{{a}^{2}}=\frac{{c}^{2}}{8}$£¬$\frac{{b}^{2}}{8}+\frac{4{e}^{2}}{{b}^{2}}=1$£®ÓÖa2=b2+c2£¬$\frac{{b}^{2}}{8}+\frac{8-{b}^{2}}{2{b}^{2}}=1$£¬½âµÃb2£»
£¨2£©ÉèA£¨x1£¬y1£©£¬B£¨x2£¬y2£©£®ÉèÖ±ÏßlµÄ·½³ÌΪy=k£¨x-1£©£®
ÁªÁ¢Ö±ÏßlÓëÍÖÔ²·½³Ì$\left\{\begin{array}{l}{y=k£¨x-1£©}\\{\frac{{x}^{2}}{8}+\frac{{y}^{2}}{4}=1}\end{array}\right.$£¬ÏûÈ¥y£¬µÃ£¨2k2+1£©x2-4k2x+2k2-8=0£¬¿ÉÉèÖ±ÏßMN·½³ÌΪy=kx£¬ÁªÁ¢Ö±ÏßMNÓëÍÖÔ²·½³Ì$\left\{\begin{array}{l}{y=kx}\\{\frac{{x}^{2}}{8}+\frac{{y}^{2}}{4}=1}\end{array}\right.$£¬ÏûÈ¥yµÃ£¨2k2+1£©x2=8£¬ÓÉMN¡Îl£¬µÃ$\frac{AT•BT}{M{N}^{2}}=\frac{£¨1-{x}_{1}£©•£¨{x}_{2}-1£©}{{£¨x}_{M}-{x}_{N}£©^{2}}$
ÓÉ£¨1-x1£©•£¨x2-1£©=-[x1x2-£¨x1+x2£©+1]=$\frac{7}{2{k}^{2}+1}$£®µÃ£¨xM-xN£©2=4x2=$\frac{32}{2{k}^{2}+1}$£®¼´¿É£®
 £¨3£©ÔÚy=k£¨x-1£©ÖУ¬Áîx=0£¬Ôòy=-k£¬ËùÒÔP£¨0£¬-k£©£¬´Ó¶ø $\overrightarrow{AP}=£¨-{x}_{1}£¬-k-{y}_{1}£©£¬\overrightarrow{TB}=£¨{x}_{2}-1£¬{y}_{2}£©$£¬ÓÉ$\overrightarrow{AP}$=$\frac{2}{5}$$\overrightarrow{TB}$µÃ $-{x}_{1}=\frac{2}{5}£¨{x}_{2}-1£©£¬¼´{x}_{1}+\frac{2}{5}{x}_{2}=\frac{2}{5}$¡­¢Ù£¬ÓÉ£¨2£©Öª$\left\{\begin{array}{l}{{x}_{1}+{x}_{2}=\frac{4{k}^{2}}{2{k}^{2}+1}}\\{{x}_{1}{x}_{2}=\frac{2{k}^{2}-8}{2{k}^{2}+1}}\end{array}\right.$¡­¢ÚÓÉ¢Ù¢ÚµÃ${x}_{1}=\frac{-4{k}^{2}+2}{3£¨2{k}^{2}+1£©}£¬{x}_{2}=\frac{16{k}^{2}-2}{3£¨2{k}^{2}+1£©}$⇒50k4-83k2-34=0£¬½âµÃk2

½â´ð ½â£º£¨1£©ÒòΪÍÖÔ²ÍÖÔ²C£º$\frac{{x}^{2}}{8}$+$\frac{{y}^{2}}{{b}^{2}}$=1¾­¹ýµã£¨b£¬2e£©ËùÒÔ$\frac{{b}^{2}}{8}+\frac{4{e}^{2}}{{b}^{2}}=1$£®
ÒòΪe2=$\frac{{c}^{2}}{{a}^{2}}=\frac{{c}^{2}}{8}$£¬ËùÒÔ$\frac{{b}^{2}}{8}+\frac{{c}^{2}}{2{b}^{2}}=1$£¬
ÓÖ¡ßa2=b2+c2£¬$\frac{{b}^{2}}{8}+\frac{8-{b}^{2}}{2{b}^{2}}=1$£¬½âµÃb2=4»òb2=8£¨ÉáÈ¥£©£®
ËùÒÔÍÖÔ²CµÄ·½³ÌΪ$\frac{{x}^{2}}{8}+\frac{{y}^{2}}{4}=1$£®
£¨2£©ÉèA£¨x1£¬y1£©£¬B£¨x2£¬y2£©£®
ÒòΪT£¨1£¬0£©£¬ÔòÖ±ÏßlµÄ·½³ÌΪy=k£¨x-1£©£®
ÁªÁ¢Ö±ÏßlÓëÍÖÔ²·½³Ì$\left\{\begin{array}{l}{y=k£¨x-1£©}\\{\frac{{x}^{2}}{8}+\frac{{y}^{2}}{4}=1}\end{array}\right.$£¬ÏûÈ¥y£¬µÃ£¨2k2+1£©x2-4k2x+2k2-8=0£¬
ËùÒÔx1+x2=$\frac{4{k}^{2}}{2{k}^{2}+1}$£¬x1x2=$\frac{2{k}^{2}-8}{2{k}^{2}+1}$£®
ÒòΪMN¡Îl£¬ËùÒÔÖ±ÏßMN·½³ÌΪy=kx£¬
ÁªÁ¢Ö±ÏßMNÓëÍÖÔ²·½³Ì$\left\{\begin{array}{l}{y=kx}\\{\frac{{x}^{2}}{8}+\frac{{y}^{2}}{4}=1}\end{array}\right.$
ÏûÈ¥yµÃ£¨2k2+1£©x2=8£¬
½âµÃx2=$\frac{8}{2{k}^{2}+1}$
ÒòΪMN¡Îl£¬ËùÒÔ$\frac{AT•BT}{M{N}^{2}}=\frac{£¨1-{x}_{1}£©•£¨{x}_{2}-1£©}{{£¨x}_{M}-{x}_{N}£©^{2}}$
ÒòΪ£¨1-x1£©•£¨x2-1£©=-[x1x2-£¨x1+x2£©+1]=$\frac{7}{2{k}^{2}+1}$£®
£¨xM-xN£©2=4x2=$\frac{32}{2{k}^{2}+1}$£®
ËùÒÔ$\frac{AT•BT}{M{N}^{2}}=\frac{£¨1-{x}_{1}£©•£¨{x}_{2}-1£©}{{£¨x}_{M}-{x}_{N}£©^{2}}$=$\frac{7}{32}$£®
£¨3£©ÔÚy=k£¨x-1£©ÖУ¬Áîx=0£¬Ôòy=-k£¬ËùÒÔP£¨0£¬-k£©£¬
´Ó¶ø $\overrightarrow{AP}=£¨-{x}_{1}£¬-k-{y}_{1}£©£¬\overrightarrow{TB}=£¨{x}_{2}-1£¬{y}_{2}£©$£¬
¡ß$\overrightarrow{AP}$=$\frac{2}{5}$$\overrightarrow{TB}$£¬$-{x}_{1}=\frac{2}{5}£¨{x}_{2}-1£©£¬¼´{x}_{1}+\frac{2}{5}{x}_{2}=\frac{2}{5}$¡­¢Ù
ÓÉ£¨2£©Öª$\left\{\begin{array}{l}{{x}_{1}+{x}_{2}=\frac{4{k}^{2}}{2{k}^{2}+1}}\\{{x}_{1}{x}_{2}=\frac{2{k}^{2}-8}{2{k}^{2}+1}}\end{array}\right.$¡­¢Ú
ÓÉ¢Ù¢ÚµÃ${x}_{1}=\frac{-4{k}^{2}+2}{3£¨2{k}^{2}+1£©}£¬{x}_{2}=\frac{16{k}^{2}-2}{3£¨2{k}^{2}+1£©}$⇒50k4-83k2-34=0£¬½âµÃk2=2»òk2=-$\frac{17}{50}$£¨Éᣩ£®
ÓÖÒòΪk£¾0£¬ËùÒÔk=$\sqrt{2}$£®¡­£¨16·Ö£©

µãÆÀ ±¾Ì⿼²éÁËÍÖÔ²µÄ·½³Ì¡¢Ö±ÏßÓëÍÖÔ²µÄλÖùØÏµ¡¢ÏòÁ¿ÔËËã¡¢·ÖÎöÎÊÌâ´¦ÀíÎÊÌâµÄÄÜÁ¦£¬¶ÔÔËËãÄÜÁ¦µÄÒªÇó½Ï¸ß£¬ÊôÓÚÄÑÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿

Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com

¾«Ó¢¼Ò½ÌÍø