题目内容
20.下列对应是集合A到集合B的映射的是( )| A. | A=N*,B=N*,f:x→|x-3| | |
| B. | A={平面内的圆},B={平面内的三角形},f:作圆的内接三角形 | |
| C. | A={x|0≤x≤2},B={y|0≤y≤6},f:x→y=$\frac{1}{2}x$ | |
| D. | A={0,1},B={-1,0,1},f:A中的数开平方根 |
分析 根据映射的定义,只要把集合A中的每一个元素在集合B中找到一个元素和它对应即可;据此分析选项可得答案.
解答 解:根据映射的定义,只要把集合A中的每一个元素在集合B中找到一个元素和它对应,可得C满足题意.
故选:C.
点评 此题是个基础题.考查映射的概念,同时考查学生对基本概念理解程度和灵活应用.
练习册系列答案
相关题目
10.已知函数f(x)=$\left\{\begin{array}{l}{{2}^{x}-m(x>0)}\\{-{x}^{2}-2mx(x≤0)}\end{array}\right.$,若函数g(x)=f(x)-m恰有3个零点,则实数m的取值范围是( )
| A. | (-∞,$\frac{1}{2}$) | B. | (-∞,1) | C. | ($\frac{1}{2}$,1) | D. | (1,+∞) |
5.已知函数f(x)=2exln$\sqrt{e}$-kx(e=2.17128…是自然对数的底数)有两个不同的零点,则实数k的取值范围是( )
| A. | (0,+∞) | B. | [1,+∞) | C. | (e,+∞) | D. | (1,+∞) |