题目内容

12.已知实数x,y满足$\left\{\begin{array}{l}{x≥1}\\{y≥-1}\\{4x+y≤9}\\{x+y≤3}\end{array}\right.$,记z=mx+y,若z的最大值为f(m),则当m∈[2,4]时,f(m)最大值和最小值之和为(  )
A.4B.10C.13D.14

分析 由题意作平面区域,化目标函数z=y+mx为y=-mx+z,从而结合图象可得目标函数z=y+mx的最大值始终可在一个点上取得,从而解得.

解答 解:由题意作平面区域如下,
化目标函数z=y+mx为y=-mx+z,
结合图象可知,当2≤m≤4时,
目标函数z=y+mx的最大值始终可在点A上取得,
由$\left\{\begin{array}{l}{y=9-4x}\\{y=3-x}\end{array}\right.$解得,x=2,y=1;
即A(2,1);
故z=2m+1,
∵2≤m≤4,∴5≤2m+1≤9,
即f(m)最大值和最小值之和为5+9=14,
故选:D.

点评 本题主要考查线性规划的应用,根据目标函数的几何意义,利用数形结合是解决本题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网