题目内容
18.已知变量x与y负相关,且由观测数据算得样本平均数$\overline{x}$=4,$\overline{y}$=2.5,则由该观测数据算得的线性回归方程可能是( )| A. | $\widehat{y}$=0.4x+0.9 | B. | $\widehat{y}$=2x-5.5 | C. | $\widehat{y}$=-2x+10.5 | D. | $\widehat{y}$=-0.3x+4.7 |
分析 根据负相关的回归方程的一次项系数为负,及样本数据中心点坐标为(4,2.5)利用排除法,可得答案.
解答 解:由已知中变量x与y负相关,
故回归方程的一次项系数为负,
故排除A,B,
由样本平均数$\overline{x}$=4,$\overline{y}$=2.5,
故回归直线过(4,2.5)点,
故排除D,
故选:C.
点评 本题考查的知识点是线性回归方程,正确理解正负相关与回归系数的关系,及回归直线方程必过样本数据中心点,是解答的关键.
练习册系列答案
相关题目
9.
已知四棱锥P-ABCD的底面ABCD是边长为2的正方形,侧面PAD是边长为2的正三角形,平面ABCD⊥平面PAD,M是PC的中点,O是AD的中点,则直线BM与平面PCO所成角的正弦值是( )
| A. | $\frac{\sqrt{5}}{5}$ | B. | $\frac{2\sqrt{5}}{5}$ | C. | $\frac{1}{5}$ | D. | $\frac{\sqrt{2}}{3}$ |
3.已知O是锐角△ABC的外接圆圆心,∠A=60°,$\frac{cosB}{sinC}$•$\overrightarrow{AB}$+$\frac{cosC}{sinB}$•$\overrightarrow{AC}$=m•$\overrightarrow{OA}$,则m的值为( )
| A. | -$\sqrt{3}$ | B. | $\sqrt{3}$ | C. | -1 | D. | 1 |
10.在8件获奖作品中,有3件一等奖,有5件二等奖,从这8件作品中任取3件.
(1)求取出的3件作品中,一等奖多于二等奖的概率;
(2)设X为取出的3件作品中一等奖的件数,求随机变量X的分布列和数学期望.
(1)求取出的3件作品中,一等奖多于二等奖的概率;
(2)设X为取出的3件作品中一等奖的件数,求随机变量X的分布列和数学期望.
7.某商场销售一种“艾丽莎”品牌服装,销售经理根据销售记录发现,该服装在过去的一个月内(以30天计)每件的销售价格P(x)(百元)与时间x(天)的函数关系近似满足P(x)=1+$\frac{k}{x}$(k为正的常数),日销售量Q(x)(件)与时间x(天)的部分数据如表所示:
已知第2哦天的日销售量为126百元.
(Ⅰ)求k的值;
(Ⅱ)给出以下三种函数模型:
①Q(x)=a•bx;
②Q(x)=a•logbx;
③Q(x)=a|x-25|+b.
请您根据如表中的数据,从中选择你认为最合适的一种函数来描述日销售量Q(x)(件)与时间x(天)的变化关系,并求出该函数的解析式;
(Ⅲ)求该服装的日销收入f(x)(1≤x≤30,x∈N*)(百元)的最小值.
| x(天) | 10 | 20 | 25 | 30 |
| Q(x)(件) | 110 | 120 | 125 | 120 |
(Ⅰ)求k的值;
(Ⅱ)给出以下三种函数模型:
①Q(x)=a•bx;
②Q(x)=a•logbx;
③Q(x)=a|x-25|+b.
请您根据如表中的数据,从中选择你认为最合适的一种函数来描述日销售量Q(x)(件)与时间x(天)的变化关系,并求出该函数的解析式;
(Ⅲ)求该服装的日销收入f(x)(1≤x≤30,x∈N*)(百元)的最小值.
8.若函数f(x)=21n(x+1)-1nax在其定义域内有且只有一个零点,则实数a的取值集合为( )
| A. | |4| | B. | (-∞,4] | C. | (-∞,0) | D. | (-∞,0)∪{4} |