题目内容
17.在△ABC中,$∠A=\frac{π}{3},BC=4\sqrt{3}$,则△ABC的周长为( )| A. | $4\sqrt{3}+8\sqrt{3}sin(B+\frac{π}{6})$ | B. | $4\sqrt{3}+8sin(B+\frac{π}{3})$ | C. | $4\sqrt{3}+8\sqrt{3}cos(B+\frac{π}{6})$ | D. | $4\sqrt{3}+8cos(B+\frac{π}{3})$ |
分析 由正弦定理可得$\frac{AB}{sinC}=\frac{AC}{sinB}=\frac{BC}{sinA}=\frac{4\sqrt{3}}{\frac{\sqrt{3}}{2}}$=8,利用三角函数恒等变换的应用,三角形内角和定理,化简即可得解.
解答 解:∵$∠A=\frac{π}{3},BC=4\sqrt{3}$,
∴由正弦定理可得:$\frac{AB}{sinC}=\frac{AC}{sinB}=\frac{BC}{sinA}=\frac{4\sqrt{3}}{\frac{\sqrt{3}}{2}}$=8,
∴△ABC的周长=BC+AB+AC=4$\sqrt{3}$+8sinC+8sinB
=4$\sqrt{3}$+8sin($\frac{2π}{3}$-B)+8sinB
=4$\sqrt{3}$+8($\frac{\sqrt{3}}{2}$cosB+$\frac{3}{2}$sinB)
=4$\sqrt{3}$+8$\sqrt{3}$sin(B+$\frac{π}{6}$).
故选:A.
点评 本题主要考查了正弦定理,三角函数恒等变换的应用在解三角形中的综合应用,考查了转化思想,属于基础题.
练习册系列答案
相关题目
8.已知A,B,C是平面上不共线的三点,O是△ABC的重心,动点P满足$\overrightarrow{OP}=\frac{1}{3}({\frac{1}{2}\overrightarrow{OA}+\frac{1}{2}\overrightarrow{OB}+2\overrightarrow{OC}})$,则P一定为△ABC的( )
| A. | AB边中线的三等分点(非重心) | B. | AB边的中点 | ||
| C. | AB边中线的中点 | D. | 重心 |
5.设函数y=f(x),x∈R“y=|f(x)|是偶函数”是“y=f(x)的图象关于原点对称”的( )
| A. | 充分不必要条件 | B. | 充要条件 | ||
| C. | 必要不充分条件 | D. | 既不充分也不必要条件 |
2.为调查了解某省属师范大学师范类毕业生参加工作后,从事的工作与教育是否有关的情况,该校随机调查了该校80位性别不同的2016年师范类毕业大学生,得到具体数据如表:
(1)能否在犯错误的概率不超过5%的前提下,认为“师范类毕业生从事与教育有关的工作与性别有关”?
参考公式:${k^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$(n=a+b+c+d).
附表:
(2)求这80位师范类毕业生从事与教育有关工作的频率;
(3)以(2)中的频率作为概率.该校近几年毕业的2000名师范类大学生中随机选取4名,记这4名毕业生从事与教育有关的人数为X,求X的数学期望E(X).
| 与教育有关 | 与教育无关 | 合计 | |
| 男 | 30 | 10 | 40 |
| 女 | 35 | 5 | 40 |
| 合计 | 65 | 15 | 80 |
参考公式:${k^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$(n=a+b+c+d).
附表:
| P(K2≥k0) | 0.50 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 |
| k0 | 0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 3.841 | 5.023 | 6.635 |
(3)以(2)中的频率作为概率.该校近几年毕业的2000名师范类大学生中随机选取4名,记这4名毕业生从事与教育有关的人数为X,求X的数学期望E(X).
6.在正方体ABCD-A1B1C1D1中,直线AB1与平面ABC1D1所成的角的正弦值为( )
| A. | $\frac{\sqrt{5}}{5}$ | B. | $\frac{\sqrt{2}}{2}$ | C. | $\frac{\sqrt{3}}{2}$ | D. | $\frac{1}{2}$ |