题目内容
10.已知动直线kx-y+4-3k=0与圆x2+y2-6x-8y+24=0交于A,B两点,平面上的动点P满足:|$\overrightarrow{PA}$+$\overrightarrow{PB}$|=4,则动点P到坐标原点O的距离的最大值为多少.分析 由条件可得直线经过圆心,点P在以点M为圆心、半径等于2的圆上,求得OM的值,则OM+2为所求.
解答 解:动直线kx-y+4-3k=0,即 k(x-3)-y+4=0,经过定点M(3,4),
圆x2+y2-6x-8y+24=0,即 (x-3)2+(y-4)2=1,表示以M(3,4)为圆心、半径等于1的圆.
故线段AB的中点为M,故有$\overrightarrow{PA}$+$\overrightarrow{PB}$=2$\overrightarrow{PM}$.
结合|$\overrightarrow{PA}$+$\overrightarrow{PB}$|=4,可得PM=|$\overrightarrow{PM}$|=2,故点P在以点M为圆心、半径等于2的圆上,
由于OM=5,
∴动点P到坐标原点O的距离的最大值为OM+2=7.
点评 本题主要考查直线经过定点问题,直线和圆的位置关系的应用,属于中档题.
练习册系列答案
相关题目
18.方程-sinx=($\frac{1}{2}$)x在区间(0,100π)内解的个数是( )
| A. | 98 | B. | 100 | C. | 102 | D. | 200 |
15.
如图,长方形的四个顶点为O(0,0),A(4,0),B(4,2),C(0,2),曲线$y=\sqrt{x}$经过点B,现将一质点随机投入长方形OABC中,则质点落在图中阴影区域的概率是( )
| A. | $\frac{2}{3}$ | B. | $\frac{3}{4}$ | C. | $\frac{4}{7}$ | D. | $\frac{7}{12}$ |
2.“光盘行动”倡导厉行节约,反对铺张浪费,带动大家珍惜粮食,吃光盘子中的食物,得到从中央到民众的支持,为了解某地响应“光盘行动”的实际情况,某校几位同学组成研究性学习小组,从某社区[25,55]岁的人群中随机抽取n人进行了一次调查,得到如下统计表:
(Ⅰ)求a,b的值,并估计本社区[25,55]岁的人群中“光盘族”所占比例;
(Ⅱ)从年龄段在[35,40)与[40,45)的“光盘族”中,采用分层抽样方法抽取8人参加节约粮食宣传活动,并从这8人中选取2人作为领队.
(i)已知选取2人中1人来自[35,40)中的前提下,求另一人来自年龄段[40,45)中的概率;
(ii)求2名领队的年龄之和的期望值(每个年龄段以中间值计算).
| 组数 | 分组 | 频数 | 频率 | “光盘族”占本组比例 |
| 第1组 | [25,30) | 50 | 0.05 | 30% |
| 第2组 | [30,35) | 100 | 0.10 | 30% |
| 第3组 | [35,40) | 150 | 0.15 | 40% |
| 第4组 | [40,45) | 200 | 0.20 | 50% |
| 第5组 | [45,50) | a | b | 65% |
| 第6组 | [50,55) | 200 | 0.20 | 60% |
(Ⅱ)从年龄段在[35,40)与[40,45)的“光盘族”中,采用分层抽样方法抽取8人参加节约粮食宣传活动,并从这8人中选取2人作为领队.
(i)已知选取2人中1人来自[35,40)中的前提下,求另一人来自年龄段[40,45)中的概率;
(ii)求2名领队的年龄之和的期望值(每个年龄段以中间值计算).