题目内容
2.若向量$\overrightarrow{m}$=(2,1),$\overrightarrow{n}$=(-3,2λ),且(2$\overrightarrow{m}$-$\overrightarrow{n}$)∥($\overrightarrow{m}$+3$\overrightarrow{n}$),则实数λ=-$\frac{3}{4}$.分析 利用向量坐标运算性质、向量共线定理即可得出.
解答 解:2$\overrightarrow{m}$-$\overrightarrow{n}$=(7,2-2λ),$\overrightarrow{m}$+3$\overrightarrow{n}$=(-7,1+6λ),
∵(2$\overrightarrow{m}$-$\overrightarrow{n}$)∥($\overrightarrow{m}$+3$\overrightarrow{n}$),∴7(1+6λ)+7(2-2λ)=0,
解得λ=-$\frac{3}{4}$.
故答案为:-$\frac{3}{4}$.
点评 本题考查了向量坐标运算性质、向量共线定理,考查了推理能力与计算能力,属于基础题.
练习册系列答案
相关题目
18.已知集合P={x|x-1≤0},M={x|x+2>0},则P∩M=( )
| A. | (-∞,1] | B. | [-2,+∞) | C. | [1,2) | D. | (-2,1] |
13.已知向量$\vec a$,$\overrightarrow{b}$的夹角为$\frac{π}{3}$,且|$\overrightarrow{a}$|=2,|$\overrightarrow{b}$|=1,则向量$\overrightarrow{a}$与向量$\overrightarrow{a}$+2$\overrightarrow{b}$的夹角为( )
| A. | $\frac{π}{6}$ | B. | $\frac{π}{3}$ | C. | $\frac{π}{4}$ | D. | $\frac{π}{2}$ |
10.复数$z=\frac{i}{1+i}-\frac{1}{2i}$(其中i是虚数单位)的虚部为( )
| A. | $\frac{1}{2}$ | B. | i | C. | 1 | D. | -1 |
17.函数y=2sin2(x+$\frac{3π}{2}$)-1是( )
| A. | 最小正周期为π的偶函数 | B. | 最小正周期为π的奇函数 | ||
| C. | 最小正周期为$\frac{π}{2}$的偶函数 | D. | 最小正周期为$\frac{π}{2}$的奇函数 |