题目内容
18.已知集合P={x|x-1≤0},M={x|x+2>0},则P∩M=( )| A. | (-∞,1] | B. | [-2,+∞) | C. | [1,2) | D. | (-2,1] |
分析 化简集合P,M,根据交集的定义进行计算即可
解答 解:集合P={x|x-1≤0}=(-∞,1],M={x|x+2>0}=(-2,+∞),
则P∩M=(-2,1],
故选:D
点评 本题考查了集合的化简与运算问题,是基础题目.
练习册系列答案
相关题目
8.若变量x,y满足约束条件$\left\{\begin{array}{l}y≤x\\ x+y≤1\\ y≥-1\end{array}\right.$,且z=2x+y的最大值和最小值分别为m和n,则m+n=( )
| A. | -2 | B. | -1 | C. | 0 | D. | 1 |
6.已知双曲线$\frac{{x}^{2}}{{a}^{2}}$$-\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)与椭圆$\frac{{x}^{2}}{{m}^{2}}$$+\frac{4{y}^{2}}{{m}^{2}}$=1的离心率互为倒数,则双曲线的渐近线方程是( )
| A. | y=±$\frac{\sqrt{3}}{3}$x | B. | y=±$\frac{1}{3}$x | C. | y=±$\sqrt{3}$x | D. | y=$±\frac{\sqrt{3}}{2}$x |
13.
学校从参加高三年级期中考试的学生中抽出50名学生,并统计了他们的数学成绩(成绩均为整数且满分为100分),得到如下数学成绩的频率分布表:
(Ⅰ)请在答题卡上完成频率分布表和作出频率分布直方图;
(Ⅱ)用样本估计总体,若高三年级共有2000人,估计成绩不及格(60分以下)的人数;
(Ⅲ)为了帮助成绩差的学生提高数学成绩,现从成绩[90,100]的学生中选两位同学,共同帮助成绩在[40,50)中的某一位同学,即成立帮扶学习小组,样本中已知甲同学的成绩为42分,乙同学的成绩为95分,求甲、乙两同学恰好被安排在同一小组的概率.
| 分组 | 频数 | 频率 |
| [40,50) | 2 | |
| [50,60) | 3 | |
| [60,70) | 0.28 | |
| [70,80) | 15 | |
| [80,90) | 12 | |
| [90,100] | 4 |
(Ⅱ)用样本估计总体,若高三年级共有2000人,估计成绩不及格(60分以下)的人数;
(Ⅲ)为了帮助成绩差的学生提高数学成绩,现从成绩[90,100]的学生中选两位同学,共同帮助成绩在[40,50)中的某一位同学,即成立帮扶学习小组,样本中已知甲同学的成绩为42分,乙同学的成绩为95分,求甲、乙两同学恰好被安排在同一小组的概率.
3.已知函数f(x)=sinωx(ω>0)的最小正周期为π,则下列直线为f(x)的对称轴的是( )
| A. | x=$\frac{π}{2}$ | B. | x=$\frac{π}{3}$ | C. | x=$\frac{π}{4}$ | D. | x=$\frac{π}{5}$ |