题目内容

8.椭圆M:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0),A为长轴的一个顶点,B为短轴的一个顶点,F为右焦点,且AB⊥BF,则椭圆M的离心率e为$\frac{\sqrt{5}-1}{2}$.

分析 由已知得AB2+BF2=AF2,从而a2+b2+a2=(a+c)2,由此能求出椭圆M的离心率e.

解答 解:如图,∵椭圆M:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0),
A为长轴的一个顶点,B为短轴的一个顶点,
F为右焦点,且AB⊥BF,
∴AB2+BF2=AF2
∴a2+b2+a2=(a+c)2
把b2=a2-c2,e=$\frac{c}{a}$代入整理,得:
e2+e-1=0,
解得e=$\frac{\sqrt{5}-1}{2}$或e=$\frac{-1-\sqrt{5}}{2}$(舍),
故答案为:$\frac{\sqrt{5}-1}{2}$.

点评 本题考查椭圆的离心率的求法,是中档题,解题时要认真审题,注意椭圆性质的合理运用.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网