ÌâÄ¿ÄÚÈÝ
4£®Èôº¯Êýy=f£¨x£©£¬x¡ÊD£¬¶ÔÈÎÒâµÄx1¡ÊD£¬×Ü´æÔÚx2¡ÊD£¬Ê¹µÃf£¨x1£©•f£¨x2£©=1£¬Ôò³Æº¯Êýf£¨x£©¾ßÓÐÐÔÖÊM£®£¨1£©ÅжϺ¯Êýy=2xºÍy=log2xÊÇ·ñ¾ßÓÐÐÔÖÊM£¬ËµÃ÷ÀíÓÉ£»
£¨2£©Èôº¯Êýy=log8£¨x+2£©£¬x¡Ê[0£¬t]¾ßÓÐÐÔÖÊM£¬ÇótµÄÖµ£»
£¨3£©Èôº¯Êýy=$\frac{{{x^2}+ax+9}}{{{x^2}-ax+9}}$£¨a¡Ù0£©ÔÚʵÊý¼¯RÉϾßÓÐÐÔÖÊM£¬ÇóaµÄȡֵ·¶Î§£®
·ÖÎö £¨1£©¸ù¾Ýº¯Êýf£¨x£©¾ßÓÐÐÔÖÊMµÄ¶¨Ò壬¿ÉµÃº¯Êýy=2x¾ßÓÐÐÔÖÊM£¬º¯Êýy=log2xûÓÐÐÔÖÊM£»
£¨2£©Èôº¯Êýy=log8£¨x+2£©£¬x¡Ê[0£¬t]¾ßÓÐÐÔÖÊM£¬Ôòlog82•log8£¨t+2£©=1£¬½ø¶øµÃµ½tµÄÖµ£»
£¨3£©Èôº¯Êý$y=\frac{{{x^2}+ax+9}}{{{x^2}-ax+9}}$£¨a¡Ù0£©ÔÚʵÊý¼¯RÉϾßÓÐÐÔÖÊM£¬ÆäÖµÓò¿ÉÄÜΪ£¨0£¬+¡Þ£©¡¢£¨-¡Þ£¬0£©¡¢[m£¬$\frac{1}{m}$]µÄÐÎʽ£¬ÓÃÅбðʽ·¨¶Ôº¯ÊýÇóÖµÓò£¬Ñ¡Æä·ûºÏÌõ¼þµÄÇé¿ö¼´¿ÉÇóa£®
½â´ð ½â£º£¨1£©º¯Êýy=2xµÄ¶¨ÒåÓòΪR£»
ÇÒf£¨x1£©•f£¨x2£©=${2}^{{x}_{1}+{x}_{2}}$£¬
Èôf£¨x1£©•f£¨x2£©=1£¬Ôòx1+x2=0£¬
¶ÔÈÎÒâµÄx1¡ÊD£¬×Ü´æÔÚx2¡ÊD£¬Ê¹µÃf£¨x1£©•f£¨x2£©=1£¬
¡àº¯Êýy=2x¾ßÓÐÐÔÖÊM£¬
º¯Êýy=log2xµÄ¶¨ÒåÓòΪ£¨0£¬+¡Þ£©£¬
Áîx1=1£¬Ôòf£¨x1£©=0£¬
´Ëʱf£¨x1£©•f£¨x2£©=0ºã³ÉÁ¢£¬
¼´²»´æÔÚx2¡Ê£¨0£¬+¡Þ£©£¬Ê¹µÃf£¨x1£©•f£¨x2£©=1£¬
¡àº¯Êýy=log2xûÓÐÐÔÖÊM£»
£¨2£©¡ßº¯Êýy=log8£¨x+2£©£¬x¡Ê[0£¬t]µÄÖµÓòΪ[log82£¬log8£¨t+2£©]£¬Èôº¯Êýy=log8£¨x+2£©£¬x¡Ê[0£¬t]¾ßÓÐÐÔÖÊM£¬
Ôòlog82•log8£¨t+2£©=1£¬t+2=83£¬
½âµÃ£ºt=510£»
£¨3£©y=$\frac{{{x^2}+ax+9}}{{{x^2}-ax+9}}$⇒£¨y-1£©x2-£¨ay+a£©x+9y-9=0
⇒¡÷=£¨ay+a£©2-4£¨y-1£©£¨9y-9£©=£¨a2-36£©y2+£¨2a2+72£©y+a2-36¡Ý0
¡ßy1y2=1£¬ÒªÊ¹º¯Êýy=$\frac{{{x^2}+ax+9}}{{{x^2}-ax+9}}$£¨a¡Ù0£©ÔÚʵÊý¼¯RÉϾßÓÐÐÔÖÊM£¬
Ôò$\left\{\begin{array}{l}{{a}^{2}-36£¼0}\\{{¡÷}_{1}£¾0}\end{array}\right.$⇒-6£¼a£¼6ÇÒa¡Ù0
¡àº¯Êýy=$\frac{{{x^2}+ax+9}}{{{x^2}-ax+9}}$£¨a¡Ù0£©ÔÚʵÊý¼¯RÉϾßÓÐÐÔÖÊM£¬aµÄȡֵ·¶Î§Îª£¨-6£¬0£©¡È£¨0.6£©
µãÆÀ ±¾Ì⿼²éÁ˺¯ÊýµÄж¨Ò壬¼°º¯ÊýµÄÖµÓò£¬ÊôÓÚѹÖáÌ⣮
| A£® | 5£¬10£¬15£¬20£¬25 | B£® | 5£¬12£¬31£¬39£¬57 | C£® | 6£¬16£¬26£¬36£¬46 | D£® | 6£¬18£¬30£¬42£¬54 |
| A£® | y=x-1 | B£® | y=x+1 | C£® | y=2x-1 | D£® | y=2x+1 |
| A£® | $\frac{33}{8}$ | B£® | 6 | C£® | 5 | D£® | $\frac{69}{17}$ |
| A£® | x2=33y | B£® | x2=33y | C£® | x2=8y | D£® | x2=16y |
| A£® | sin$\frac{1}{2}$£¼cos$\frac{1}{2}$£¼tan$\frac{1}{2}$ | B£® | cos$\frac{1}{2}$£¼sin$\frac{1}{2}$£¼tan$\frac{1}{2}$ | ||
| C£® | sin$\frac{1}{2}$£¼tan$\frac{1}{2}$£¼cos$\frac{1}{2}$ | D£® | tan$\frac{1}{2}$£¼sin$\frac{1}{2}$£¼cos$\frac{1}{2}$ |