题目内容
14.若sinA-cosA=$\frac{\sqrt{5}}{2}$,则sinA•cosA的值为-$\frac{1}{8}$.分析 由条件利用同角三角函数的基本关系,求得sinA•cosA的值.
解答 解:∵sinA-cosA=$\frac{\sqrt{5}}{2}$,则平方可得1-2sinA•cosA=$\frac{5}{4}$,
求得sinAcosA=-$\frac{1}{8}$,
故答案为:-$\frac{1}{8}$.
点评 本题主要考查同角三角函数的基本关系,属于基础题.
练习册系列答案
相关题目
5.圆心为(-3,2)且过点A(1,-1)的圆的方程是( )
| A. | (x-3)2+(y-2)2=5 | B. | (x+3)2+(y-2)2=5 | C. | (x-3)2+(y-2)2=25 | D. | (x+3)2+(y-2)2=25 |
2.已知角α的顶点与直角坐标系的原点重合,始边与x轴的非负半轴重合,若点P(1,-$\sqrt{3}$)是角α终边上一点,则tanα的值为( )
| A. | $\frac{1}{2}$ | B. | -$\frac{\sqrt{3}}{2}$ | C. | -$\sqrt{3}$ | D. | -$\frac{\sqrt{3}}{2}$ |
9.如图是函数y=Asin(ωx+φ)(A>0,ω>0,0<φ<2π)在一个周期内的图象,则( )

| A. | A=2,ω=2,φ=$\frac{π}{3}$ | B. | A=2,ω=2,φ=$\frac{2π}{3}$ | C. | A=2,ω=$\frac{1}{2}$,φ=-$\frac{π}{3}$ | D. | A=2,ω=2,φ=-$\frac{π}{3}$ |
6.在一次模拟考试后,从高三某班随机抽取了20位学生的数学成绩,其分布如下:
分数在130分(包括130分)以上者为优秀,据此估计该班的优秀率约为( )
| 分组 | [90,100] | [100,110) | [110,120) | [120,130) | [130,140) | [140,150) |
| 频数 | 1 | 2 | 6 | 7 | 3 | 1 |
| A. | 10% | B. | 20% | C. | 30% | D. | 40% |