题目内容

4.已知函数f(x)=2sin(x-$\frac{π}{6}$).
(1)求函数f(x)的单调增区间;
(2)若f(x)=$\frac{6}{5}$,求cos(x+$\frac{π}{3}$)的值.

分析 (1)由条件利用正弦函数的单调性,求得函数f(x)的单调增区间.
(2)由条件利用诱导公式,求得cos(x+$\frac{π}{3}$)的值.

解答 解:(1)对于函数f(x)=2sin(x-$\frac{π}{6}$),令 2kπ-$\frac{π}{2}$≤x-$\frac{π}{6}$≤2kπ+$\frac{π}{2}$,求得2kπ-$\frac{π}{3}$≤x≤2kπ+$\frac{2π}{3}$,
故函数的增区间为[2kπ-$\frac{π}{3}$,2kπ+$\frac{2π}{3}$],k∈Z.
(2)若f(x)=2sin(x-$\frac{π}{6}$)=$\frac{6}{5}$,∴sin(x-$\frac{π}{6}$)=$\frac{3}{5}$=-cos($\frac{π}{2}$+x-$\frac{π}{6}$)=-cos(x+$\frac{π}{3}$),
∴cos(x+$\frac{π}{3}$)=-$\frac{3}{5}$.

点评 本题主要考查正弦函数的单调性,诱导公式的应用,属于基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网