题目内容

4.函数f(x)=sin(ωx+φ)(x∈R,ω>0,|φ|<$\frac{π}{2}$)的部分图象如图所示,则函数f(x)的解析式为(  )
A.f(x)=sin(2x-$\frac{π}{4}$)B.f(x)=sin(2x+$\frac{π}{4}$)C.f(x)=sin(4x+$\frac{π}{4}$)D.f(x)=sin(4x-$\frac{π}{4}$)

分析 根据函数的周期求出ω,结合五点对应法求出φ即可.

解答 解:由图象得$\frac{T}{4}$=$\frac{3π}{8}-\frac{π}{8}$=$\frac{2π}{8}$,即T=π,
即T=$\frac{2π}{ω}=π$,即ω=2,
则函数y=sin(2x+φ),
由五点对应法得2×$\frac{π}{8}$+φ=$\frac{π}{2}$,
∴φ=$\frac{π}{2}$-$\frac{π}{4}$=$\frac{π}{4}$,
则f(x)=sin(2x+$\frac{π}{4}$),
故选:B

点评 本题主要考查三角函数解析式的求解,结合条件求出ω和φ的值是解决本题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网