题目内容

9.若函数f(x)=xm+nx的导函数是f'(x)=2x+1,则$\int_{\;\;1}^{\;\;3}{f(-x)dx=}$(  )
A.1B.2C.$\frac{4}{3}$D.$\frac{14}{3}$

分析 根据函数f(x)=xm+ax的导函数f′(x)=2x+1求出f(x),进而求出f(-x),根据定积分的性质,找出函数f(-x)的原函数然后代入计算即可.

解答 解:由于f(x)=xm+nx的导函数f′(x)=2x+1,
∴f(x)=x2+x,
于是$\int_{\;\;1}^{\;\;3}{f(-x)dx=}$∫13(x2-x)dx
=($\frac{1}{3}$x3-$\frac{1}{2}$x2)|13=$\frac{14}{3}$.
故选D.

点评 此题考查定积分的性质及其计算,要掌握定积分基本的定义和性质,解题的关键是找出原函数.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网