题目内容
已知数列{an}、{bn}满足:a1=
,an+bn=1,bn+1=
.
(1)设cn=
,求证:数列{cn}是等差数列,并求bn的通项公式;
(2)求Sn=a1a2+a2a3+a3a4+…+anan+1.
| 1 |
| 4 |
| bn |
| (1-an)(1+an) |
(1)设cn=
| 1 |
| bn-1 |
(2)求Sn=a1a2+a2a3+a3a4+…+anan+1.
考点:数列的求和
专题:等差数列与等比数列
分析:(1)由已知条件推导出
=
=-1+
,由此能证明数列{cn}是以-4为首项,-1为公差的等差数列,并能求出bn=
.
(2)由an=1-bn=
,利用裂项求和法能求出Sn=a1a2+a2a3+a3a4+…+anan+1的值.
| 1 |
| bn+1-1 |
| 2-bn |
| bn-1 |
| 1 |
| bn-1 |
| n+2 |
| n+3 |
(2)由an=1-bn=
| 1 |
| n+3 |
解答:
(1)证明:∵bn+1-1=
-1,
∴
=
=-1+
,
∵cn=
,a1=
,an+bn=1,
∴c1=
=
=-4,
∴∴数列{cn}是以-4为首项,-1为公差的等差数列,
∴cn=
=-4+(n-1)•(-1)=-n-3.
∴bn=
.
(2)∵an=1-bn=
,
∴Sn=a1a2+a2a3+a3a4+…+anan+1
=
+
+…+
=
-
+
-
+…+
-
=
-
=
.
| 1 |
| 2-bn |
∴
| 1 |
| bn+1-1 |
| 2-bn |
| bn-1 |
| 1 |
| bn-1 |
∵cn=
| 1 |
| bn-1 |
| 1 |
| 4 |
∴c1=
| 1 |
| b1-1 |
| 1 | ||
-
|
∴∴数列{cn}是以-4为首项,-1为公差的等差数列,
∴cn=
| 1 |
| bn-1 |
∴bn=
| n+2 |
| n+3 |
(2)∵an=1-bn=
| 1 |
| n+3 |
∴Sn=a1a2+a2a3+a3a4+…+anan+1
=
| 1 |
| 4×5 |
| 1 |
| 5×6 |
| 1 |
| (n+3)(n+4) |
=
| 1 |
| 4 |
| 1 |
| 5 |
| 1 |
| 5 |
| 1 |
| 6 |
| 1 |
| n+3 |
| 1 |
| n+4 |
=
| 1 |
| 4 |
| 1 |
| n+4 |
=
| n |
| 4(n+4) |
点评:本题考查等差数列的证明,考查数列的通项公式和前n项和公式的合理运用,解题时要认真审题,注意裂项求和法的合理运用.
练习册系列答案
相关题目