题目内容
求证:cos2x+cos2(x+α)-2cosxcosαcos(x+α)=sin2α.
证明:左边=
(1+cos2x)+
[1+cos(2x+2α)]-2cosxcosαcos(x+α)
=1+
[cos2x+cos(2x+2α)]-2cosxcosαcos(x+α)
=1+cos(2x+α)cosα-cosα[cos(2x+α)+cosα]
=1+cos(2x+α)cosα-cosαcos(2x+α)-cos2α
=1-cos2α=sin2α
=右边,
∴原不等式成立.
练习册系列答案
相关题目