题目内容
16.已知$|\overrightarrow a|=1,|\overrightarrow b|=2$且$<\vec a,\vec b>=120°$则$|2\overrightarrow a+\overrightarrow b|$等于( )| A. | 4 | B. | 12 | C. | 2 | D. | 2$\sqrt{3}$ |
分析 根据向量的数量积公式计算即可.
解答 解:∵$|\overrightarrow a|=1,|\overrightarrow b|=2$且$<\vec a,\vec b>=120°$,
∴$\overrightarrow{a}•\overrightarrow{b}$=|$\overrightarrow{a}$|•|$\overrightarrow{b}$|•cos<$\overrightarrow{a}$,$\overrightarrow{b}$>=1×2×(-$\frac{1}{2}$)=-1,
∴$|2\overrightarrow a+\overrightarrow b|$2=4|$\overrightarrow{a}$|2+|$\overrightarrow{b}$|2+4$\overrightarrow{a}•\overrightarrow{b}$=4×1+4-4=4,
∴$|2\overrightarrow a+\overrightarrow b|$=2,
故选:C
点评 本题考查了向量的数量积的运算和向量模的计算,属于基础题.
练习册系列答案
相关题目
7.
函数f(x)=2sin(ωx+φ)(ω>0,-$\frac{π}{2}$<φ<$\frac{π}{2}$)的部分图象如图所示,将f(x)的图象向左平移$\frac{π}{6}$个单位后的解析式为( )
| A. | y=2sin(2x-$\frac{π}{6}$) | B. | y=2sin(2x+$\frac{π}{6}$) | C. | y=2sin(2x) | D. | y=2sin(2x+$\frac{π}{3}$) |
11.
某市文化部门为了了解本市市民对当地地方戏曲是否喜爱,从15-65岁的人群中随机抽样了n人,得到如下的统计表和频率分布直方图.
(Ⅰ)写出其中的a、b及x和y的值;
(Ⅱ)若从第1,2,3组回答喜欢地方戏曲的人中用分层抽样的方法抽取6人,求这三组每组分别抽取多少人?
(Ⅲ)在(Ⅱ)抽取的6人中随机抽取2人,求这2人中没有第3组人的概率.
(Ⅰ)写出其中的a、b及x和y的值;
(Ⅱ)若从第1,2,3组回答喜欢地方戏曲的人中用分层抽样的方法抽取6人,求这三组每组分别抽取多少人?
(Ⅲ)在(Ⅱ)抽取的6人中随机抽取2人,求这2人中没有第3组人的概率.
| 组号 | 分组 | 喜爱人数 | 喜爱人数 占本组的频率 |
| 第1组 | [15,25) | a | 0.10 |
| 第2组 | [25,35) | b | 0.20 |
| 第3组 | [35,45) | 6 | 0.20 |
| 第4组 | [45,55) | 12 | 0.60 |
| 第5组 | [55,65] | 20 | 0.40 |