题目内容
一个物体的运动方程为s=2t2+t+1,其中s的单位是米,t的是秒,那么物体在2秒末的瞬时速度是( )
| A、10米/秒 | B、7米/秒 |
| C、9米/秒 | D、8米/秒 |
考点:导数的运算
专题:导数的概念及应用
分析:据对位移求导即得到物体的瞬时速度,求出导函数在t=2时的值,即为物体在2秒末的瞬时速度
解答:
解:求导函数可得s′=4t+1
当t=2时,s′=4t+1=4×2+1=9
故选C.
当t=2时,s′=4t+1=4×2+1=9
故选C.
点评:本题考查导数知识的运用,考查导数的物理意义,属于基础题.
练习册系列答案
相关题目
随机变量X的分布列如下,P(1≤X<4)的值为( )
| X | 0 | 1 | 2 | 3 | 4 |
| P | 0.1 | 0.2 | 0.3 | x | 0.1 |
| A、0.6 | B、0.7 |
| C、0.8 | D、0.9 |
过双曲线x2-y2=8的左焦点F1有一条弦PQ在左支上,若|PQ|=7,F2是双曲线的右焦点,则△PF2Q的周长是( )
| A、28 | ||
B、14-8
| ||
C、14+8
| ||
D、8
|
已知不等式x2-ax+1>0对任意x∈[0,2]恒成立,则实数a的取值范围为( )
A、(-∞,
| ||
| B、(-2,2) | ||
| C、[-2,2] | ||
| D、(-∞,2) |
设n是自然数,f(n)=1+
+
+…+
,经计算可得,f(2)=
,f(4)>2,f(8)>
,f(16)>3,f(32)>
.观察上述结果,可得出的一般结论是( )
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| n |
| 3 |
| 2 |
| 5 |
| 2 |
| 7 |
| 2 |
A、f(2n)>
| ||
B、f(n2)≥
| ||
C、f(2n)≥
| ||
D、f(2n)>
|
正整数按下表的规律排列:则上起第2012行左起2013列的数为( )

| A、20122 |
| B、20132 |
| C、2011×2012 |
| D、2012×2013 |
设F1,F2是椭圆
+
=1的左、右两个焦点,若椭圆上满足PF1⊥PF2的点P有且只有两个,则离心率e的值为( )
| x2 |
| a2 |
| y2 |
| b2 |
A、
| ||||
B、
| ||||
C、
| ||||
D、
|