题目内容

设a,b∈R,则“a>b”是“a|a|>b|b|”的(  )
A、充分不必要条件
B、必要不充分条件
C、充要条件
D、既不充分又不必要条件
考点:必要条件、充分条件与充要条件的判断
专题:简易逻辑
分析:根据不等式的性质,结合充分条件和必要条件的定义进行判断即可得到结论.
解答: 解:若a>b,
①a>b≥0,不等式a|a|>b|b|等价为a•a>b•b,此时成立.
②0>a>b,不等式a|a|>b|b|等价为-a•a>-b•b,即a2<b2,此时成立.
③a≥0>b,不等式a|a|>b|b|等价为a•a>-b•b,即a2>-b2,此时成立,即充分性成立.
若a|a|>b|b|,
①当a>0,b>0时,a|a|>b|b|去掉绝对值得,(a-b)(a+b)>0,因为a+b>0,所以a-b>0,即a>b.
②当a>0,b<0时,a>b.
③当a<0,b<0时,a|a|>b|b|去掉绝对值得,(a-b)(a+b)<0,因为a+b<0,所以a-b>0,即a>b.即必要性成立,
综上“a>b”是“a|a|>b|b|”的充要条件,
故选:C.
点评:本题主要考查充分条件和必要条件的判断,利用不等式的性质 结合分类讨论是解决本题的关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网